hank1996 commited on
Commit
dc15cb1
·
1 Parent(s): 4d2e32c

Create new file

Browse files
Files changed (1) hide show
  1. utils/datasets.py +100 -0
utils/datasets.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import argparse
3
+ import sys
4
+ import time
5
+
6
+ sys.path.append('./') # to run '$ python *.py' files in subdirectories
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ import models
12
+ from models.experimental import attempt_load
13
+ from utils.activations import Hardswish, SiLU
14
+ from utils.general import set_logging, check_img_size
15
+ from utils.torch_utils import select_device
16
+
17
+ if __name__ == '__main__':
18
+ parser = argparse.ArgumentParser()
19
+ parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
20
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
21
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
22
+ parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
23
+ parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
24
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
25
+ opt = parser.parse_args()
26
+ opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
27
+ print(opt)
28
+ set_logging()
29
+ t = time.time()
30
+
31
+ # Load PyTorch model
32
+ device = select_device(opt.device)
33
+ model = attempt_load(opt.weights, map_location=device) # load FP32 model
34
+ labels = model.names
35
+
36
+ # Checks
37
+ gs = int(max(model.stride)) # grid size (max stride)
38
+ opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
39
+
40
+ # Input
41
+ img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
42
+
43
+ # Update model
44
+ for k, m in model.named_modules():
45
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
46
+ if isinstance(m, models.common.Conv): # assign export-friendly activations
47
+ if isinstance(m.act, nn.Hardswish):
48
+ m.act = Hardswish()
49
+ elif isinstance(m.act, nn.SiLU):
50
+ m.act = SiLU()
51
+ # elif isinstance(m, models.yolo.Detect):
52
+ # m.forward = m.forward_export # assign forward (optional)
53
+ model.model[-1].export = not opt.grid # set Detect() layer grid export
54
+ y = model(img) # dry run
55
+
56
+ # TorchScript export
57
+ try:
58
+ print('\nStarting TorchScript export with torch %s...' % torch.__version__)
59
+ f = opt.weights.replace('.pt', '.torchscript.pt') # filename
60
+ ts = torch.jit.trace(model, img, strict=False)
61
+ ts.save(f)
62
+ print('TorchScript export success, saved as %s' % f)
63
+ except Exception as e:
64
+ print('TorchScript export failure: %s' % e)
65
+
66
+ # ONNX export
67
+ try:
68
+ import onnx
69
+
70
+ print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
71
+ f = opt.weights.replace('.pt', '.onnx') # filename
72
+ torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
73
+ output_names=['classes', 'boxes'] if y is None else ['output'],
74
+ dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
75
+ 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
76
+
77
+ # Checks
78
+ onnx_model = onnx.load(f) # load onnx model
79
+ onnx.checker.check_model(onnx_model) # check onnx model
80
+ # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
81
+ print('ONNX export success, saved as %s' % f)
82
+ except Exception as e:
83
+ print('ONNX export failure: %s' % e)
84
+
85
+ # CoreML export
86
+ try:
87
+ import coremltools as ct
88
+
89
+ print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
90
+ # convert model from torchscript and apply pixel scaling as per detect.py
91
+ model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
92
+ f = opt.weights.replace('.pt', '.mlmodel') # filename
93
+ model.save(f)
94
+ print('CoreML export success, saved as %s' % f)
95
+ except Exception as e:
96
+ print('CoreML export failure: %s' % e)
97
+
98
+ # Finish
99
+ print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
100
+