Spaces:
Sleeping
Sleeping
Create new file
Browse files- utils/aws/resume.py +36 -0
utils/aws/resume.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import yaml
|
8 |
+
|
9 |
+
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
10 |
+
|
11 |
+
port = 0 # --master_port
|
12 |
+
path = Path('').resolve()
|
13 |
+
for last in path.rglob('*/**/last.pt'):
|
14 |
+
ckpt = torch.load(last)
|
15 |
+
if ckpt['optimizer'] is None:
|
16 |
+
continue
|
17 |
+
|
18 |
+
# Load opt.yaml
|
19 |
+
with open(last.parent.parent / 'opt.yaml') as f:
|
20 |
+
opt = yaml.load(f, Loader=yaml.SafeLoader)
|
21 |
+
|
22 |
+
# Get device count
|
23 |
+
d = opt['device'].split(',') # devices
|
24 |
+
nd = len(d) # number of devices
|
25 |
+
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
|
26 |
+
|
27 |
+
if ddp: # multi-GPU
|
28 |
+
port += 1
|
29 |
+
cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
|
30 |
+
else: # single-GPU
|
31 |
+
cmd = f'python train.py --resume {last}'
|
32 |
+
|
33 |
+
cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
|
34 |
+
print(cmd)
|
35 |
+
os.system(cmd)
|
36 |
+
|