Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt") | |
os.system("wget https://github.com/hustvl/YOLOP/raw/main/weights/End-to-end.pth") | |
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt") | |
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt") | |
os.system("wget https://github.com/CAIC-AD/YOLOPv2/releases/download/V0.0.1/yolopv2.pt") | |
import argparse | |
import time | |
from pathlib import Path | |
import cv2 | |
import torch | |
import torch.backends.cudnn as cudnn | |
from numpy import random | |
from lib.config import cfg | |
from lib.models import get_net | |
import torchvision.transforms as transforms | |
from lib.dataset.DemoDataset import LoadImages as LoadImages1 | |
#from lib.core.general import non_max_suppression, scale_coords | |
from lib.utils.plot import plot_one_box as plot_one_box1 | |
from lib.utils.plot import show_seg_result as show_seg_result1 | |
from tqdm import tqdm | |
from utils.functions import \ | |
time_synchronized,select_device, increment_path,\ | |
scale_coords,xyxy2xywh,non_max_suppression,split_for_trace_model,\ | |
driving_area_mask,lane_line_mask,plot_one_box,show_seg_result,\ | |
AverageMeter,\ | |
LoadImages | |
from PIL import Image | |
def detect(img,model): | |
#with torch.no_grad(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)') | |
parser.add_argument('--source', type=str, default='Inference/', help='source') # file/folder, 0 for webcam | |
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') | |
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') | |
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--view-img', action='store_true', help='display results') | |
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |
parser.add_argument('--nosave', action='store_true', help='do not save images/videos') | |
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') | |
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | |
parser.add_argument('--augment', action='store_true', help='augmented inference') | |
parser.add_argument('--update', action='store_true', help='update all models') | |
parser.add_argument('--project', default='runs/detect', help='save results to project/name') | |
parser.add_argument('--name', default='exp', help='save results to project/name') | |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | |
parser.add_argument('--trace', action='store_true', help='trace model') | |
opt = parser.parse_args() | |
img.save("Inference/test.jpg") | |
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace | |
save_img = True # save inference images | |
#webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( | |
#('rtsp://', 'rtmp://', 'http://', 'https://')) | |
#print(webcam) | |
# Directories | |
#save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run | |
#(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | |
# Initialize | |
#set_logging() | |
device = select_device(opt.device) | |
#print(device) | |
half = device.type != 'cpu' # half precision only supported on CUDA | |
# Load model | |
inf_time = AverageMeter() | |
waste_time = AverageMeter() | |
nms_time = AverageMeter() | |
# Load model | |
#model = attempt_load(weights, map_location=device) # load FP32 model | |
#stride = int(model.stride.max()) # model stride | |
#imgsz = check_img_size(imgsz, s=stride) # check img_size | |
if weights == 'yolopv2.pt': | |
print(weights) | |
stride =32 | |
model = torch.jit.load(weights,map_location=device) | |
model.eval() | |
# Set Dataloader | |
vid_path, vid_writer = None, None | |
dataset = LoadImages(source, img_size=imgsz, stride=stride) | |
# Run inference | |
t0 = time.time() | |
for path, img, im0s, vid_cap in dataset: | |
print(img.shape) | |
img = torch.from_numpy(img).to(device) | |
img = img.half() if half else img.float() # uint8 to fp16/32 | |
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
print(img.shape) | |
if img.ndimension() == 3: | |
img = img.unsqueeze(0) | |
# Inference | |
t1 = time_synchronized() | |
[pred,anchor_grid],seg,ll= model(img) | |
t2 = time_synchronized() | |
# waste time: the incompatibility of torch.jit.trace causes extra time consumption in demo version | |
# but this problem will not appear in offical version | |
tw1 = time_synchronized() | |
pred = split_for_trace_model(pred,anchor_grid) | |
tw2 = time_synchronized() | |
# Apply NMS | |
t3 = time_synchronized() | |
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) | |
t4 = time_synchronized() | |
da_seg_mask = driving_area_mask(seg) | |
ll_seg_mask = lane_line_mask(ll) | |
print(da_seg_mask.shape) | |
# Process detections | |
for i, det in enumerate(pred): # detections per image | |
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) | |
p = Path(p) # to Path | |
#save_path = str(save_dir / p.name) # img.jpg | |
#txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt | |
s += '%gx%g ' % img.shape[2:] # print string | |
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | |
if len(det): | |
# Rescale boxes from img_size to im0 size | |
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() | |
# Print results | |
#for c in det[:, -1].unique(): | |
#n = (det[:, -1] == c).sum() # detections per class | |
#s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | |
# Write results | |
for *xyxy, conf, cls in reversed(det): | |
if save_txt: # Write to file | |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format | |
if save_img : # Add bbox to image | |
plot_one_box(xyxy, im0, line_thickness=3) | |
# Print time (inference) | |
print(f'{s}Done. ({t2 - t1:.3f}s)') | |
show_seg_result(im0, (da_seg_mask,ll_seg_mask), is_demo=True) | |
inf_time.update(t2-t1,img.size(0)) | |
nms_time.update(t4-t3,img.size(0)) | |
#waste_time.update(tw2-tw1,img.size(0)) | |
print('Done. (%.3fs)' % (time.time() - t0)) | |
print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg)) | |
if weights == 'yolop.pt': | |
weights = 'End-to-end.pth' | |
print(weights) | |
normalize = transforms.Normalize( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
) | |
transform=transforms.Compose([ | |
transforms.ToTensor(), | |
normalize, | |
]) | |
model = get_net(cfg) | |
checkpoint = torch.load(weights, map_location= device) | |
#print(checkpoint) | |
model.load_state_dict(checkpoint['state_dict']) | |
model = model.to(device) | |
dataset = LoadImages1(source, img_size=imgsz) | |
bs = 1 # batch_size | |
# Get names and colors | |
names = model.module.names if hasattr(model, 'module') else model.names | |
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] | |
# Run inference | |
t0 = time.time() | |
vid_path, vid_writer = None, None | |
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img | |
_ = model(img.half() if half else img) # run once | |
model.eval() | |
for i, (path, img, img_det, vid_cap,shapes) in tqdm(enumerate(dataset),total = len(dataset)): | |
print(img.shape) | |
img = transform(img).to(device) | |
img = img.half() if half else img.float() # uint8 to fp16/32 | |
if img.ndimension() == 3: | |
img = img.unsqueeze(0) | |
# Inference | |
t1 = time_synchronized() | |
det_out, da_seg_out,ll_seg_out= model(img) | |
t2 = time_synchronized() | |
# if i == 0: | |
# print(det_out) | |
inf_out, _ = det_out | |
inf_time.update(t2-t1,img.size(0)) | |
# Apply NMS | |
t3 = time_synchronized() | |
det_pred = non_max_suppression(inf_out, conf_thres=opt.conf_thres, iou_thres=opt.iou_thres, classes=None, agnostic=False) | |
t4 = time_synchronized() | |
nms_time.update(t4-t3,img.size(0)) | |
det=det_pred[0] | |
#save_path = str(save_dir +'/'+ 'img.jpg') | |
_, _, height, width = img.shape | |
h,w,_=img_det.shape | |
pad_w, pad_h = shapes[1][1] | |
pad_w = int(pad_w) | |
pad_h = int(pad_h) | |
ratio = shapes[1][0][1] | |
da_predict = da_seg_out[:, :, pad_h:(height-pad_h),pad_w:(width-pad_w)] | |
da_seg_mask = torch.nn.functional.interpolate(da_predict, scale_factor=int(1/ratio), mode='bilinear') | |
_, da_seg_mask = torch.max(da_seg_mask, 1) | |
da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy() | |
# da_seg_mask = morphological_process(da_seg_mask, kernel_size=7) | |
ll_predict = ll_seg_out[:, :,pad_h:(height-pad_h),pad_w:(width-pad_w)] | |
ll_seg_mask = torch.nn.functional.interpolate(ll_predict, scale_factor=int(1/ratio), mode='bilinear') | |
_, ll_seg_mask = torch.max(ll_seg_mask, 1) | |
ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy() | |
# Lane line post-processing | |
#ll_seg_mask = morphological_process(ll_seg_mask, kernel_size=7, func_type=cv2.MORPH_OPEN) | |
#ll_seg_mask = connect_lane(ll_seg_mask) | |
img_det = show_seg_result1(img_det, (da_seg_mask, ll_seg_mask), _, _, is_demo=True) | |
if len(det): | |
det[:,:4] = scale_coords(img.shape[2:],det[:,:4],img_det.shape).round() | |
for *xyxy,conf,cls in reversed(det): | |
label_det_pred = f'{names[int(cls)]} {conf:.2f}' | |
plot_one_box1(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=2) | |
im0 = img_det | |
print('Done. (%.3fs)' % (time.time() - t0)) | |
print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg)) | |
#inf_time.update(t2-t1,img.size(0)) | |
#nms_time.update(t4-t3,img.size(0)) | |
#waste_time.update(tw2-tw1,img.size(0)) | |
#print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg)) | |
#print(f'Done. ({time.time() - t0:.3f}s)') | |
#print(im0.shape) | |
return Image.fromarray(im0[:,:,::-1]) | |
gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=["yolopv2","yolop"])], gr.Image(type="pil"),title="Yolopv2",examples=[["example.jpeg", "yolopv2"]],description="demo for <a href='https://github.com/CAIC-AD/YOLOPv2' style='text-decoration: underline' target='_blank'>yolopv2</a> 🚀: Better, Faster, Stronger for Panoptic driving Perception ").launch() | |