Spaces:
Sleeping
Sleeping
import torch | |
from lib.utils import is_parallel | |
import numpy as np | |
np.set_printoptions(threshold=np.inf) | |
import cv2 | |
from sklearn.cluster import DBSCAN | |
def build_targets(cfg, predictions, targets, model): | |
''' | |
predictions | |
[16, 3, 32, 32, 85] | |
[16, 3, 16, 16, 85] | |
[16, 3, 8, 8, 85] | |
torch.tensor(predictions[i].shape)[[3, 2, 3, 2]] | |
[32,32,32,32] | |
[16,16,16,16] | |
[8,8,8,8] | |
targets[3,x,7] | |
t [index, class, x, y, w, h, head_index] | |
''' | |
# Build targets for compute_loss(), input targets(image,class,x,y,w,h) | |
det = model.module.model[model.module.detector_index] if is_parallel(model) \ | |
else model.model[model.detector_index] # Detect() module | |
# print(type(model)) | |
# det = model.model[model.detector_index] | |
# print(type(det)) | |
na, nt = det.na, targets.shape[0] # number of anchors, targets | |
tcls, tbox, indices, anch = [], [], [], [] | |
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain | |
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) | |
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices | |
g = 0.5 # bias | |
off = torch.tensor([[0, 0], | |
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m | |
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm | |
], device=targets.device).float() * g # offsets | |
for i in range(det.nl): | |
anchors = det.anchors[i] #[3,2] | |
gain[2:6] = torch.tensor(predictions[i].shape)[[3, 2, 3, 2]] # xyxy gain | |
# Match targets to anchors | |
t = targets * gain | |
if nt: | |
# Matches | |
r = t[:, :, 4:6] / anchors[:, None] # wh ratio | |
j = torch.max(r, 1. / r).max(2)[0] < cfg.TRAIN.ANCHOR_THRESHOLD # compare | |
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) | |
t = t[j] # filter | |
# Offsets | |
gxy = t[:, 2:4] # grid xy | |
gxi = gain[[2, 3]] - gxy # inverse | |
j, k = ((gxy % 1. < g) & (gxy > 1.)).T | |
l, m = ((gxi % 1. < g) & (gxi > 1.)).T | |
j = torch.stack((torch.ones_like(j), j, k, l, m)) | |
t = t.repeat((5, 1, 1))[j] | |
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] | |
else: | |
t = targets[0] | |
offsets = 0 | |
# Define | |
b, c = t[:, :2].long().T # image, class | |
gxy = t[:, 2:4] # grid xy | |
gwh = t[:, 4:6] # grid wh | |
gij = (gxy - offsets).long() | |
gi, gj = gij.T # grid xy indices | |
# Append | |
a = t[:, 6].long() # anchor indices | |
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices | |
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box | |
anch.append(anchors[a]) # anchors | |
tcls.append(c) # class | |
return tcls, tbox, indices, anch | |
def morphological_process(image, kernel_size=5, func_type=cv2.MORPH_CLOSE): | |
""" | |
morphological process to fill the hole in the binary segmentation result | |
:param image: | |
:param kernel_size: | |
:return: | |
""" | |
if len(image.shape) == 3: | |
raise ValueError('Binary segmentation result image should be a single channel image') | |
if image.dtype is not np.uint8: | |
image = np.array(image, np.uint8) | |
kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size)) | |
# close operation fille hole | |
closing = cv2.morphologyEx(image, func_type, kernel, iterations=1) | |
return closing | |
def connect_components_analysis(image): | |
""" | |
connect components analysis to remove the small components | |
:param image: | |
:return: | |
""" | |
if len(image.shape) == 3: | |
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
else: | |
gray_image = image | |
# print(gray_image.dtype) | |
return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S) | |
def if_y(samples_x): | |
for sample_x in samples_x: | |
if len(sample_x): | |
# if len(sample_x) != (sample_x[-1] - sample_x[0] + 1) or sample_x[-1] == sample_x[0]: | |
if sample_x[-1] == sample_x[0]: | |
return False | |
return True | |
def fitlane(mask, sel_labels, labels, stats): | |
H, W = mask.shape | |
for label_group in sel_labels: | |
states = [stats[k] for k in label_group] | |
x, y, w, h, _ = states[0] | |
# if len(label_group) > 1: | |
# print('in') | |
# for m in range(len(label_group)-1): | |
# labels[labels == label_group[m+1]] = label_group[0] | |
t = label_group[0] | |
# samples_y = np.linspace(y, H-1, 30) | |
# else: | |
samples_y = np.linspace(y, y+h-1, 30) | |
samples_x = [np.where(labels[int(sample_y)]==t)[0] for sample_y in samples_y] | |
if if_y(samples_x): | |
samples_x = [int(np.mean(sample_x)) if len(sample_x) else -1 for sample_x in samples_x] | |
samples_x = np.array(samples_x) | |
samples_y = np.array(samples_y) | |
samples_y = samples_y[samples_x != -1] | |
samples_x = samples_x[samples_x != -1] | |
func = np.polyfit(samples_y, samples_x, 2) | |
x_limits = np.polyval(func, H-1) | |
# if (y_max + h - 1) >= 720: | |
if x_limits < 0 or x_limits > W: | |
# if (y_max + h - 1) > 720: | |
# draw_y = np.linspace(y, 720-1, 720-y) | |
draw_y = np.linspace(y, y+h-1, h) | |
else: | |
# draw_y = np.linspace(y, y+h-1, y+h-y) | |
draw_y = np.linspace(y, H-1, H-y) | |
draw_x = np.polyval(func, draw_y) | |
# draw_y = draw_y[draw_x < W] | |
# draw_x = draw_x[draw_x < W] | |
draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32) | |
cv2.polylines(mask, [draw_points], False, 1, thickness=15) | |
else: | |
# if ( + w - 1) >= 1280: | |
samples_x = np.linspace(x, W-1, 30) | |
# else: | |
# samples_x = np.linspace(x, x_max+w-1, 30) | |
samples_y = [np.where(labels[:, int(sample_x)]==t)[0] for sample_x in samples_x] | |
samples_y = [int(np.mean(sample_y)) if len(sample_y) else -1 for sample_y in samples_y] | |
samples_x = np.array(samples_x) | |
samples_y = np.array(samples_y) | |
samples_x = samples_x[samples_y != -1] | |
samples_y = samples_y[samples_y != -1] | |
try: | |
func = np.polyfit(samples_x, samples_y, 2) | |
except: | |
pass | |
# y_limits = np.polyval(func, 0) | |
# if y_limits > 720 or y_limits < 0: | |
# if (x + w - 1) >= 1280: | |
# draw_x = np.linspace(x, 1280-1, 1280-x) | |
# else: | |
y_limits = np.polyval(func, 0) | |
if y_limits >= H or y_limits < 0: | |
draw_x = np.linspace(x, x+w-1, w+x-x) | |
else: | |
y_limits = np.polyval(func, W-1) | |
if y_limits >= H or y_limits < 0: | |
draw_x = np.linspace(x, x+w-1, w+x-x) | |
# if x+w-1 < 640: | |
# draw_x = np.linspace(0, x+w-1, w+x-x) | |
else: | |
draw_x = np.linspace(x, W-1, W-x) | |
draw_y = np.polyval(func, draw_x) | |
draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32) | |
cv2.polylines(mask, [draw_points], False, 1, thickness=15) | |
return mask | |
def connect_lane(image, shadow_height=0): | |
if len(image.shape) == 3: | |
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
else: | |
gray_image = image | |
if shadow_height: | |
image[:shadow_height] = 0 | |
mask = np.zeros((image.shape[0], image.shape[1]), np.uint8) | |
num_labels, labels, stats, centers = cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S) | |
# ratios = [] | |
selected_label = [] | |
for t in range(1, num_labels, 1): | |
_, _, _, _, area = stats[t] | |
if area > 400: | |
selected_label.append(t) | |
if len(selected_label) == 0: | |
return mask | |
else: | |
split_labels = [[label,] for label in selected_label] | |
mask_post = fitlane(mask, split_labels, labels, stats) | |
return mask_post | |