Spaces:
Sleeping
Sleeping
# Auto-anchor utils | |
import numpy as np | |
import torch | |
import yaml | |
from scipy.cluster.vq import kmeans | |
from tqdm import tqdm | |
from lib.utils import is_parallel | |
def check_anchor_order(m): | |
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary | |
a = m.anchor_grid.prod(-1).view(-1) # anchor area | |
da = a[-1] - a[0] # delta a | |
ds = m.stride[-1] - m.stride[0] # delta s | |
if da.sign() != ds.sign(): # same order | |
print('Reversing anchor order') | |
m.anchors[:] = m.anchors.flip(0) | |
m.anchor_grid[:] = m.anchor_grid.flip(0) | |
def run_anchor(logger,dataset, model, thr=4.0, imgsz=640): | |
det = model.module.model[model.module.detector_index] if is_parallel(model) \ | |
else model.model[model.detector_index] | |
anchor_num = det.na * det.nl | |
new_anchors = kmean_anchors(dataset, n=anchor_num, img_size=imgsz, thr=thr, gen=1000, verbose=False) | |
new_anchors = torch.tensor(new_anchors, device=det.anchors.device).type_as(det.anchors) | |
det.anchor_grid[:] = new_anchors.clone().view_as(det.anchor_grid) # for inference | |
det.anchors[:] = new_anchors.clone().view_as(det.anchors) / det.stride.to(det.anchors.device).view(-1, 1, 1) # loss | |
check_anchor_order(det) | |
logger.info(str(det.anchors)) | |
print('New anchors saved to model. Update model config to use these anchors in the future.') | |
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): | |
""" Creates kmeans-evolved anchors from training dataset | |
Arguments: | |
path: path to dataset *.yaml, or a loaded dataset | |
n: number of anchors | |
img_size: image size used for training | |
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 | |
gen: generations to evolve anchors using genetic algorithm | |
verbose: print all results | |
Return: | |
k: kmeans evolved anchors | |
Usage: | |
from utils.autoanchor import *; _ = kmean_anchors() | |
""" | |
thr = 1. / thr | |
def metric(k, wh): # compute metrics | |
r = wh[:, None] / k[None] | |
x = torch.min(r, 1. / r).min(2)[0] # ratio metric | |
# x = wh_iou(wh, torch.tensor(k)) # iou metric | |
return x, x.max(1)[0] # x, best_x | |
def anchor_fitness(k): # mutation fitness | |
_, best = metric(torch.tensor(k, dtype=torch.float32), wh) | |
return (best * (best > thr).float()).mean() # fitness | |
def print_results(k): | |
k = k[np.argsort(k.prod(1))] # sort small to large | |
x, best = metric(k, wh0) | |
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr | |
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat)) | |
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' % | |
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='') | |
for i, x in enumerate(k): | |
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg | |
return k | |
if isinstance(path, str): # not class | |
raise TypeError('Dataset must be class, but found str') | |
else: | |
dataset = path # dataset | |
labels = [db['label'] for db in dataset.db] | |
labels = np.vstack(labels) | |
if not (labels[:, 1:] <= 1).all(): | |
# normalize label | |
labels[:, [2, 4]] /= dataset.shapes[0] | |
labels[:, [1, 3]] /= dataset.shapes[1] | |
# Get label wh | |
shapes = img_size * dataset.shapes / dataset.shapes.max() | |
# wh0 = np.concatenate([l[:, 3:5] * shapes for l in labels]) # wh | |
wh0 = labels[:, 3:5] * shapes | |
# Filter | |
i = (wh0 < 3.0).any(1).sum() | |
if i: | |
print('WARNING: Extremely small objects found. ' | |
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0))) | |
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels | |
# Kmeans calculation | |
print('Running kmeans for %g anchors on %g points...' % (n, len(wh))) | |
s = wh.std(0) # sigmas for whitening | |
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance | |
k *= s | |
wh = torch.tensor(wh, dtype=torch.float32) # filtered | |
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered | |
k = print_results(k) | |
# Plot | |
# k, d = [None] * 20, [None] * 20 | |
# for i in tqdm(range(1, 21)): | |
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance | |
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) | |
# ax = ax.ravel() | |
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') | |
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh | |
# ax[0].hist(wh[wh[:, 0]<100, 0],400) | |
# ax[1].hist(wh[wh[:, 1]<100, 1],400) | |
# fig.savefig('wh.png', dpi=200) | |
# Evolve | |
npr = np.random | |
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma | |
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar | |
for _ in pbar: | |
v = np.ones(sh) | |
while (v == 1).all(): # mutate until a change occurs (prevent duplicates) | |
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) | |
kg = (k.copy() * v).clip(min=2.0) | |
fg = anchor_fitness(kg) | |
if fg > f: | |
f, k = fg, kg.copy() | |
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f | |
if verbose: | |
print_results(k) | |
return print_results(k) | |