Spaces:
Sleeping
Sleeping
File size: 9,235 Bytes
d2afe6a ed73f5d d575bf1 59294b2 d2afe6a a319300 30481ca d2afe6a 6e0dbd0 375525b d2afe6a b69d964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import gradio as gr
import os
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt")
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
os.system("wget https://github.com/CAIC-AD/YOLOPv2/releases/download/V0.0.1/yolopv2.pt")
import argparse
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
#from models.experimental import attempt_load
#from utils.datasets import LoadStreams, LoadImages
#from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
#scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
#from utils.plots import plot_one_box
#from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
from utils.functions import \
time_synchronized,select_device, increment_path,\
scale_coords,xyxy2xywh,non_max_suppression,split_for_trace_model,\
driving_area_mask,lane_line_mask,plot_one_box,show_seg_result,\
AverageMeter,\
LoadImages
from PIL import Image
def detect(img,model):
#with torch.no_grad():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
parser.add_argument('--source', type=str, default='Inference/', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--trace', action='store_true', help='trace model')
opt = parser.parse_args()
img.save("Inference/test.jpg")
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
save_img = True # save inference images
#webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
#('rtsp://', 'rtmp://', 'http://', 'https://'))
#print(webcam)
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
#print(device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
inf_time = AverageMeter()
waste_time = AverageMeter()
nms_time = AverageMeter()
# Load model
#model = attempt_load(weights, map_location=device) # load FP32 model
#stride = int(model.stride.max()) # model stride
#imgsz = check_img_size(imgsz, s=stride) # check img_size
#print(weights)
stride =32
model = torch.jit.load(weights,map_location=device)
model.eval()
# Set Dataloader
vid_path, vid_writer = None, None
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
print(img.shape)
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
[pred,anchor_grid],seg,ll= model(img)
t2 = time_synchronized()
# waste time: the incompatibility of torch.jit.trace causes extra time consumption in demo version
# but this problem will not appear in offical version
tw1 = time_synchronized()
pred = split_for_trace_model(pred,anchor_grid)
tw2 = time_synchronized()
# Apply NMS
t3 = time_synchronized()
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t4 = time_synchronized()
da_seg_mask = driving_area_mask(seg)
ll_seg_mask = lane_line_mask(ll)
print(da_seg_mask.shape)
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
#for c in det[:, -1].unique():
#n = (det[:, -1] == c).sum() # detections per class
#s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img : # Add bbox to image
plot_one_box(xyxy, im0, line_thickness=3)
# Print time (inference)
print(f'{s}Done. ({t2 - t1:.3f}s)')
show_seg_result(im0, (da_seg_mask,ll_seg_mask), is_demo=True)
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
print(f" The image with the result is saved in: {save_path}")
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
#w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
#h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
w,h = im0.shape[1], im0.shape[0]
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
inf_time.update(t2-t1,img.size(0))
nms_time.update(t4-t3,img.size(0))
waste_time.update(tw2-tw1,img.size(0))
print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
print(f'Done. ({time.time() - t0:.3f}s)')
print(im0.shape)
return Image.fromarray(im0[:,:,::-1])
gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=["yolopv2"])], gr.Image(type="pil"),title="Yolopv2",examples=[["example.jpeg", "yolopv2"]],description="demo for <a href='https://github.com/CAIC-AD/YOLOPv2' style='text-decoration: underline' target='_blank'>YOLOPv2</a> YOLOPv2🚀: Better, Faster, Stronger for Panoptic driving Perception").launch()
|