File size: 8,406 Bytes
b212448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224


import torch
from lib.utils import is_parallel
import numpy as np
np.set_printoptions(threshold=np.inf)
import cv2
from sklearn.cluster import DBSCAN


def build_targets(cfg, predictions, targets, model):
    '''
    predictions
    [16, 3, 32, 32, 85]
    [16, 3, 16, 16, 85]
    [16, 3, 8, 8, 85]
    torch.tensor(predictions[i].shape)[[3, 2, 3, 2]]
    [32,32,32,32]
    [16,16,16,16]
    [8,8,8,8]
    targets[3,x,7]
    t [index, class, x, y, w, h, head_index]
    '''
    # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
    det = model.module.model[model.module.detector_index] if is_parallel(model) \
        else model.model[model.detector_index]  # Detect() module
    # print(type(model))
    # det = model.model[model.detector_index]
    # print(type(det))
    na, nt = det.na, targets.shape[0]  # number of anchors, targets
    tcls, tbox, indices, anch = [], [], [], []
    gain = torch.ones(7, device=targets.device)  # normalized to gridspace gain
    ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
    targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indices
    
    g = 0.5  # bias
    off = torch.tensor([[0, 0],
                        [1, 0], [0, 1], [-1, 0], [0, -1],  # j,k,l,m
                        # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
                        ], device=targets.device).float() * g  # offsets
    
    for i in range(det.nl):
        anchors = det.anchors[i] #[3,2]
        gain[2:6] = torch.tensor(predictions[i].shape)[[3, 2, 3, 2]]  # xyxy gain
        # Match targets to anchors
        t = targets * gain

        if nt:
            # Matches
            r = t[:, :, 4:6] / anchors[:, None]  # wh ratio
            j = torch.max(r, 1. / r).max(2)[0] < cfg.TRAIN.ANCHOR_THRESHOLD  # compare
            # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
            t = t[j]  # filter

            # Offsets
            gxy = t[:, 2:4]  # grid xy
            gxi = gain[[2, 3]] - gxy  # inverse
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxi % 1. < g) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j), j, k, l, m))
            t = t.repeat((5, 1, 1))[j]
            offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
        else:
            t = targets[0]
            offsets = 0

        # Define
        b, c = t[:, :2].long().T  # image, class
        gxy = t[:, 2:4]  # grid xy
        gwh = t[:, 4:6]  # grid wh
        gij = (gxy - offsets).long()
        gi, gj = gij.T  # grid xy indices

        # Append
        a = t[:, 6].long()  # anchor indices
        indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
        tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
        anch.append(anchors[a])  # anchors
        tcls.append(c)  # class

    return tcls, tbox, indices, anch

def morphological_process(image, kernel_size=5, func_type=cv2.MORPH_CLOSE):
    """
    morphological process to fill the hole in the binary segmentation result
    :param image:
    :param kernel_size:
    :return:
    """
    if len(image.shape) == 3:
        raise ValueError('Binary segmentation result image should be a single channel image')

    if image.dtype is not np.uint8:
        image = np.array(image, np.uint8)

    kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size))

    # close operation fille hole
    closing = cv2.morphologyEx(image, func_type, kernel, iterations=1)

    return closing

def connect_components_analysis(image):
    """
    connect components analysis to remove the small components
    :param image:
    :return:
    """
    if len(image.shape) == 3:
        gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    else:
        gray_image = image
    # print(gray_image.dtype)
    return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S)

def if_y(samples_x):
    for sample_x in samples_x:
        if len(sample_x):
            # if len(sample_x) != (sample_x[-1] - sample_x[0] + 1) or sample_x[-1] == sample_x[0]:
            if sample_x[-1] == sample_x[0]:
                return False
    return True
    
def fitlane(mask, sel_labels, labels, stats):
    H, W = mask.shape
    for label_group in sel_labels:
        states = [stats[k] for k in label_group]
        x, y, w, h, _ = states[0]
        # if len(label_group) > 1:
        #     print('in')
        #     for m in range(len(label_group)-1):
        #         labels[labels == label_group[m+1]] = label_group[0]
        t = label_group[0]
        # samples_y = np.linspace(y, H-1, 30)
        # else:
        samples_y = np.linspace(y, y+h-1, 30)
        
        samples_x = [np.where(labels[int(sample_y)]==t)[0] for sample_y in samples_y]

        if if_y(samples_x):
            samples_x = [int(np.mean(sample_x)) if len(sample_x) else -1 for sample_x in samples_x]
            samples_x = np.array(samples_x)
            samples_y = np.array(samples_y)
            samples_y = samples_y[samples_x != -1]
            samples_x = samples_x[samples_x != -1]
            func = np.polyfit(samples_y, samples_x, 2)
            x_limits = np.polyval(func, H-1)
            # if (y_max + h - 1) >= 720:
            if x_limits < 0 or x_limits > W:
            # if (y_max + h - 1) > 720:
                # draw_y = np.linspace(y, 720-1, 720-y)
                draw_y = np.linspace(y, y+h-1, h)
            else:
                # draw_y = np.linspace(y, y+h-1, y+h-y)
                draw_y = np.linspace(y, H-1, H-y)
            draw_x = np.polyval(func, draw_y)
            # draw_y = draw_y[draw_x < W]
            # draw_x = draw_x[draw_x < W]
            draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32)
            cv2.polylines(mask, [draw_points], False, 1, thickness=15)
        else:
            # if ( + w - 1) >= 1280:
            samples_x = np.linspace(x, W-1, 30)
            # else:
            #     samples_x = np.linspace(x, x_max+w-1, 30)
            samples_y = [np.where(labels[:, int(sample_x)]==t)[0] for sample_x in samples_x]
            samples_y = [int(np.mean(sample_y)) if len(sample_y) else -1 for sample_y in samples_y]
            samples_x = np.array(samples_x)
            samples_y = np.array(samples_y)
            samples_x = samples_x[samples_y != -1]
            samples_y = samples_y[samples_y != -1]
            try:
                func = np.polyfit(samples_x, samples_y, 2)
            except:
                pass
            # y_limits = np.polyval(func, 0)
            # if y_limits > 720 or y_limits < 0:
            # if (x + w - 1) >= 1280:
            #     draw_x = np.linspace(x, 1280-1, 1280-x)
            # else:
            y_limits = np.polyval(func, 0)
            if y_limits >= H or y_limits < 0:
                draw_x = np.linspace(x, x+w-1, w+x-x)
            else:
                y_limits = np.polyval(func, W-1)
                if y_limits >= H or y_limits < 0:
                    draw_x = np.linspace(x, x+w-1, w+x-x)
                # if x+w-1 < 640:
                #     draw_x = np.linspace(0, x+w-1, w+x-x)
                else:
                    draw_x = np.linspace(x, W-1, W-x)
            draw_y = np.polyval(func, draw_x)
            draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32)
            cv2.polylines(mask, [draw_points], False, 1, thickness=15)
    return mask

def connect_lane(image, shadow_height=0):
    if len(image.shape) == 3:
        gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    else:
        gray_image = image
    if shadow_height:
        image[:shadow_height] = 0
    mask = np.zeros((image.shape[0], image.shape[1]), np.uint8)
    
    num_labels, labels, stats, centers = cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S)
    # ratios = []
    selected_label = []
    
    for t in range(1, num_labels, 1):
        _, _, _, _, area = stats[t]
        if area > 400:
            selected_label.append(t)
    if len(selected_label) == 0:
        return mask
    else:
        split_labels = [[label,] for label in selected_label]
        mask_post = fitlane(mask, split_labels, labels, stats)
        return mask_post