Spaces:
Sleeping
Sleeping
File size: 8,406 Bytes
b212448 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import torch
from lib.utils import is_parallel
import numpy as np
np.set_printoptions(threshold=np.inf)
import cv2
from sklearn.cluster import DBSCAN
def build_targets(cfg, predictions, targets, model):
'''
predictions
[16, 3, 32, 32, 85]
[16, 3, 16, 16, 85]
[16, 3, 8, 8, 85]
torch.tensor(predictions[i].shape)[[3, 2, 3, 2]]
[32,32,32,32]
[16,16,16,16]
[8,8,8,8]
targets[3,x,7]
t [index, class, x, y, w, h, head_index]
'''
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
det = model.module.model[model.module.detector_index] if is_parallel(model) \
else model.model[model.detector_index] # Detect() module
# print(type(model))
# det = model.model[model.detector_index]
# print(type(det))
na, nt = det.na, targets.shape[0] # number of anchors, targets
tcls, tbox, indices, anch = [], [], [], []
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
g = 0.5 # bias
off = torch.tensor([[0, 0],
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
], device=targets.device).float() * g # offsets
for i in range(det.nl):
anchors = det.anchors[i] #[3,2]
gain[2:6] = torch.tensor(predictions[i].shape)[[3, 2, 3, 2]] # xyxy gain
# Match targets to anchors
t = targets * gain
if nt:
# Matches
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
j = torch.max(r, 1. / r).max(2)[0] < cfg.TRAIN.ANCHOR_THRESHOLD # compare
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
t = t[j] # filter
# Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
j = torch.stack((torch.ones_like(j), j, k, l, m))
t = t.repeat((5, 1, 1))[j]
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
else:
t = targets[0]
offsets = 0
# Define
b, c = t[:, :2].long().T # image, class
gxy = t[:, 2:4] # grid xy
gwh = t[:, 4:6] # grid wh
gij = (gxy - offsets).long()
gi, gj = gij.T # grid xy indices
# Append
a = t[:, 6].long() # anchor indices
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
anch.append(anchors[a]) # anchors
tcls.append(c) # class
return tcls, tbox, indices, anch
def morphological_process(image, kernel_size=5, func_type=cv2.MORPH_CLOSE):
"""
morphological process to fill the hole in the binary segmentation result
:param image:
:param kernel_size:
:return:
"""
if len(image.shape) == 3:
raise ValueError('Binary segmentation result image should be a single channel image')
if image.dtype is not np.uint8:
image = np.array(image, np.uint8)
kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size))
# close operation fille hole
closing = cv2.morphologyEx(image, func_type, kernel, iterations=1)
return closing
def connect_components_analysis(image):
"""
connect components analysis to remove the small components
:param image:
:return:
"""
if len(image.shape) == 3:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray_image = image
# print(gray_image.dtype)
return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S)
def if_y(samples_x):
for sample_x in samples_x:
if len(sample_x):
# if len(sample_x) != (sample_x[-1] - sample_x[0] + 1) or sample_x[-1] == sample_x[0]:
if sample_x[-1] == sample_x[0]:
return False
return True
def fitlane(mask, sel_labels, labels, stats):
H, W = mask.shape
for label_group in sel_labels:
states = [stats[k] for k in label_group]
x, y, w, h, _ = states[0]
# if len(label_group) > 1:
# print('in')
# for m in range(len(label_group)-1):
# labels[labels == label_group[m+1]] = label_group[0]
t = label_group[0]
# samples_y = np.linspace(y, H-1, 30)
# else:
samples_y = np.linspace(y, y+h-1, 30)
samples_x = [np.where(labels[int(sample_y)]==t)[0] for sample_y in samples_y]
if if_y(samples_x):
samples_x = [int(np.mean(sample_x)) if len(sample_x) else -1 for sample_x in samples_x]
samples_x = np.array(samples_x)
samples_y = np.array(samples_y)
samples_y = samples_y[samples_x != -1]
samples_x = samples_x[samples_x != -1]
func = np.polyfit(samples_y, samples_x, 2)
x_limits = np.polyval(func, H-1)
# if (y_max + h - 1) >= 720:
if x_limits < 0 or x_limits > W:
# if (y_max + h - 1) > 720:
# draw_y = np.linspace(y, 720-1, 720-y)
draw_y = np.linspace(y, y+h-1, h)
else:
# draw_y = np.linspace(y, y+h-1, y+h-y)
draw_y = np.linspace(y, H-1, H-y)
draw_x = np.polyval(func, draw_y)
# draw_y = draw_y[draw_x < W]
# draw_x = draw_x[draw_x < W]
draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32)
cv2.polylines(mask, [draw_points], False, 1, thickness=15)
else:
# if ( + w - 1) >= 1280:
samples_x = np.linspace(x, W-1, 30)
# else:
# samples_x = np.linspace(x, x_max+w-1, 30)
samples_y = [np.where(labels[:, int(sample_x)]==t)[0] for sample_x in samples_x]
samples_y = [int(np.mean(sample_y)) if len(sample_y) else -1 for sample_y in samples_y]
samples_x = np.array(samples_x)
samples_y = np.array(samples_y)
samples_x = samples_x[samples_y != -1]
samples_y = samples_y[samples_y != -1]
try:
func = np.polyfit(samples_x, samples_y, 2)
except:
pass
# y_limits = np.polyval(func, 0)
# if y_limits > 720 or y_limits < 0:
# if (x + w - 1) >= 1280:
# draw_x = np.linspace(x, 1280-1, 1280-x)
# else:
y_limits = np.polyval(func, 0)
if y_limits >= H or y_limits < 0:
draw_x = np.linspace(x, x+w-1, w+x-x)
else:
y_limits = np.polyval(func, W-1)
if y_limits >= H or y_limits < 0:
draw_x = np.linspace(x, x+w-1, w+x-x)
# if x+w-1 < 640:
# draw_x = np.linspace(0, x+w-1, w+x-x)
else:
draw_x = np.linspace(x, W-1, W-x)
draw_y = np.polyval(func, draw_x)
draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32)
cv2.polylines(mask, [draw_points], False, 1, thickness=15)
return mask
def connect_lane(image, shadow_height=0):
if len(image.shape) == 3:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray_image = image
if shadow_height:
image[:shadow_height] = 0
mask = np.zeros((image.shape[0], image.shape[1]), np.uint8)
num_labels, labels, stats, centers = cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S)
# ratios = []
selected_label = []
for t in range(1, num_labels, 1):
_, _, _, _, area = stats[t]
if area > 400:
selected_label.append(t)
if len(selected_label) == 0:
return mask
else:
split_labels = [[label,] for label in selected_label]
mask_post = fitlane(mask, split_labels, labels, stats)
return mask_post
|