File size: 5,858 Bytes
35c8a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167


import os
import logging
import time
from collections import namedtuple
from pathlib import Path

import torch
import torch.optim as optim
import torch.nn as nn
import numpy as np
from torch.utils.data import DataLoader
from prefetch_generator import BackgroundGenerator
from contextlib import contextmanager
import re

def clean_str(s):
    # Cleans a string by replacing special characters with underscore _
    return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)

def create_logger(cfg, cfg_path, phase='train', rank=-1):
    # set up logger dir
    dataset = cfg.DATASET.DATASET
    dataset = dataset.replace(':', '_')
    model = cfg.MODEL.NAME
    cfg_path = os.path.basename(cfg_path).split('.')[0]

    if rank in [-1, 0]:
        time_str = time.strftime('%Y-%m-%d-%H-%M')
        log_file = '{}_{}_{}.log'.format(cfg_path, time_str, phase)
        # set up tensorboard_log_dir
        tensorboard_log_dir = Path(cfg.LOG_DIR) / dataset / model / \
                                  (cfg_path + '_' + time_str)
        final_output_dir = tensorboard_log_dir
        if not tensorboard_log_dir.exists():
            print('=> creating {}'.format(tensorboard_log_dir))
            tensorboard_log_dir.mkdir(parents=True)

        final_log_file = tensorboard_log_dir / log_file
        head = '%(asctime)-15s %(message)s'
        logging.basicConfig(filename=str(final_log_file),
                            format=head)
        logger = logging.getLogger()
        logger.setLevel(logging.INFO)
        console = logging.StreamHandler()
        logging.getLogger('').addHandler(console)

        return logger, str(final_output_dir), str(tensorboard_log_dir)
    else:
        return None, None, None


def select_device(logger=None, device='', batch_size=None):
    # device = 'cpu' or '0' or '0,1,2,3'
    cpu_request = device.lower() == 'cpu'
    if device and not cpu_request:  # if device requested other than 'cpu'
        os.environ['CUDA_VISIBLE_DEVICES'] = device  # set environment variable
        assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device  # check availablity

    cuda = False if cpu_request else torch.cuda.is_available()
    if cuda:
        c = 1024 ** 2  # bytes to MB
        ng = torch.cuda.device_count()
        if ng > 1 and batch_size:  # check that batch_size is compatible with device_count
            assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
        x = [torch.cuda.get_device_properties(i) for i in range(ng)]
        s = f'Using torch {torch.__version__} '
        for i in range(0, ng):
            if i == 1:
                s = ' ' * len(s)
            if logger:
                logger.info("%sCUDA:%g (%s, %dMB)" % (s, i, x[i].name, x[i].total_memory / c))
    else:
        if logger:
            logger.info(f'Using torch {torch.__version__} CPU')

    if logger:
        logger.info('')  # skip a line
    return torch.device('cuda:0' if cuda else 'cpu')


def get_optimizer(cfg, model):
    optimizer = None
    if cfg.TRAIN.OPTIMIZER == 'sgd':
        optimizer = optim.SGD(
            filter(lambda p: p.requires_grad, model.parameters()),
            lr=cfg.TRAIN.LR0,
            momentum=cfg.TRAIN.MOMENTUM,
            weight_decay=cfg.TRAIN.WD,
            nesterov=cfg.TRAIN.NESTEROV
        )
    elif cfg.TRAIN.OPTIMIZER == 'adam':
        optimizer = optim.Adam(
            filter(lambda p: p.requires_grad, model.parameters()),
            #model.parameters(),
            lr=cfg.TRAIN.LR0,
            betas=(cfg.TRAIN.MOMENTUM, 0.999)
        )

    return optimizer


def save_checkpoint(epoch, name, model, optimizer, output_dir, filename, is_best=False):
    model_state = model.module.state_dict() if is_parallel(model) else model.state_dict()
    checkpoint = {
            'epoch': epoch,
            'model': name,
            'state_dict': model_state,
            # 'best_state_dict': model.module.state_dict(),
            # 'perf': perf_indicator,
            'optimizer': optimizer.state_dict(),
        }
    torch.save(checkpoint, os.path.join(output_dir, filename))
    if is_best and 'state_dict' in checkpoint:
        torch.save(checkpoint['best_state_dict'],
                   os.path.join(output_dir, 'model_best.pth'))


def initialize_weights(model):
    for m in model.modules():
        t = type(m)
        if t is nn.Conv2d:
            pass  # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        elif t is nn.BatchNorm2d:
            m.eps = 1e-3
            m.momentum = 0.03
        elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
        # elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
            m.inplace = True


def xyxy2xywh(x):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
    y[:, 2] = x[:, 2] - x[:, 0]  # width
    y[:, 3] = x[:, 3] - x[:, 1]  # height
    return y


def is_parallel(model):
    return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)


def time_synchronized():
    torch.cuda.synchronize() if torch.cuda.is_available() else None
    return time.time()


class DataLoaderX(DataLoader):
    """prefetch dataloader"""
    def __iter__(self):
        return BackgroundGenerator(super().__iter__())

@contextmanager
def torch_distributed_zero_first(local_rank: int):
    """
    Decorator to make all processes in distributed training wait for each local_master to do something.
    """
    if local_rank not in [-1, 0]:
        torch.distributed.barrier()
    yield
    if local_rank == 0:
        torch.distributed.barrier()