Spaces:
Runtime error
Runtime error
Updating prepare_models (#1)
Browse files- Updating prepare_models (8e98ce788746309169c34d162fa96fa2d4d7de56)
- util/prepare_utils.py +13 -12
util/prepare_utils.py
CHANGED
@@ -184,17 +184,14 @@ def extract_features(imgs, feature_extractor_ensemble, dim):
|
|
184 |
return features
|
185 |
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
def prepare_models(model_backbones,
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
|
199 |
backbone_dict = {'IR_50': IR_50(input_size), 'IR_152': IR_152(input_size), 'ResNet_50': ResNet_50(input_size),
|
200 |
'ResNet_152': ResNet_152(input_size)}
|
@@ -205,11 +202,14 @@ def prepare_models(model_backbones,
|
|
205 |
models_attack = []
|
206 |
for i in range(len(model_backbones)):
|
207 |
model = backbone_dict[model_backbones[i]]
|
208 |
-
|
|
|
|
|
|
|
|
|
209 |
models_attack.append(model)
|
210 |
|
211 |
if using_subspace:
|
212 |
-
|
213 |
V_reduction = []
|
214 |
for i in range(len(model_backbones)):
|
215 |
V_reduction.append(torch.tensor(np.load(V_reduction_root[i])))
|
@@ -221,6 +221,7 @@ def prepare_models(model_backbones,
|
|
221 |
|
222 |
return models_attack, V_reduction, dim
|
223 |
|
|
|
224 |
def prepare_data(query_data_root, target_data_root, freq, batch_size, warp = False, theta_warp = None):
|
225 |
|
226 |
data = datasets.ImageFolder(query_data_root, tensor_transform)
|
|
|
184 |
return features
|
185 |
|
186 |
|
|
|
|
|
|
|
187 |
def prepare_models(model_backbones,
|
188 |
+
input_size,
|
189 |
+
model_roots,
|
190 |
+
kernel_size_attack,
|
191 |
+
sigma_attack,
|
192 |
+
combination,
|
193 |
+
using_subspace,
|
194 |
+
V_reduction_root):
|
195 |
|
196 |
backbone_dict = {'IR_50': IR_50(input_size), 'IR_152': IR_152(input_size), 'ResNet_50': ResNet_50(input_size),
|
197 |
'ResNet_152': ResNet_152(input_size)}
|
|
|
202 |
models_attack = []
|
203 |
for i in range(len(model_backbones)):
|
204 |
model = backbone_dict[model_backbones[i]]
|
205 |
+
try:
|
206 |
+
model.load_state_dict(torch.load(model_roots[i], map_location=device))
|
207 |
+
except Exception as e:
|
208 |
+
print(f"Error loading model {model_roots[i]}: {e}")
|
209 |
+
continue
|
210 |
models_attack.append(model)
|
211 |
|
212 |
if using_subspace:
|
|
|
213 |
V_reduction = []
|
214 |
for i in range(len(model_backbones)):
|
215 |
V_reduction.append(torch.tensor(np.load(V_reduction_root[i])))
|
|
|
221 |
|
222 |
return models_attack, V_reduction, dim
|
223 |
|
224 |
+
|
225 |
def prepare_data(query_data_root, target_data_root, freq, batch_size, warp = False, theta_warp = None):
|
226 |
|
227 |
data = datasets.ImageFolder(query_data_root, tensor_transform)
|