File size: 1,270 Bytes
f5e51f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
import torch
model_id = "AtlaAI/Selene-1-Mini-Llama-3.1-8B"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU
def generate_response(prompt):
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512,
do_sample=True
)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
demo = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(label="γγγ³γγγε
₯εγγ¦γγ γγ"),
outputs=gr.Textbox(label="ηζγγγεΏη"),
title="Selene-1-Mini-Llama-3.1-8B γγ’",
description="γγγ³γγγε
₯εγγγ¨γγ’γγ«γεΏηγηζγγΎγγ"
)
if __name__ == "__main__":
demo.launch()
|