Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import spaces
|
4 |
+
from duckduckgo_search import DDGS
|
5 |
+
import time
|
6 |
+
import torch
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
# Initialize model and tokenizer
|
10 |
+
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
tokenizer.pad_token = tokenizer.eos_token
|
13 |
+
|
14 |
+
# Modified model loading for CPU
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_name,
|
17 |
+
device_map="cpu", # Changed to CPU
|
18 |
+
low_cpu_mem_usage=True,
|
19 |
+
torch_dtype=torch.float32 # Changed to float32 for CPU
|
20 |
+
)
|
21 |
+
|
22 |
+
def get_web_results(query, max_results=5): # Increased to 5 for better context
|
23 |
+
"""Get web search results using DuckDuckGo"""
|
24 |
+
try:
|
25 |
+
with DDGS() as ddgs:
|
26 |
+
results = list(ddgs.text(query, max_results=max_results))
|
27 |
+
return [{
|
28 |
+
"title": result.get("title", ""),
|
29 |
+
"snippet": result["body"],
|
30 |
+
"url": result["href"],
|
31 |
+
"date": result.get("published", "")
|
32 |
+
} for result in results]
|
33 |
+
except Exception as e:
|
34 |
+
return []
|
35 |
+
|
36 |
+
def format_prompt(query, context):
|
37 |
+
"""Format the prompt with web context"""
|
38 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
39 |
+
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
|
40 |
+
return f"""You are an intelligent search assistant. Answer the user's query using the provided web context.
|
41 |
+
Current Time: {current_time}
|
42 |
+
|
43 |
+
Query: {query}
|
44 |
+
|
45 |
+
Web Context:
|
46 |
+
{context_lines}
|
47 |
+
|
48 |
+
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc.
|
49 |
+
Answer:"""
|
50 |
+
|
51 |
+
def format_sources(web_results):
|
52 |
+
"""Format sources with more details"""
|
53 |
+
if not web_results:
|
54 |
+
return "<div class='no-sources'>No sources available</div>"
|
55 |
+
|
56 |
+
sources_html = "<div class='sources-container'>"
|
57 |
+
for i, res in enumerate(web_results, 1):
|
58 |
+
title = res["title"] or "Source"
|
59 |
+
date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else ""
|
60 |
+
sources_html += f"""
|
61 |
+
<div class='source-item'>
|
62 |
+
<div class='source-number'>[{i}]</div>
|
63 |
+
<div class='source-content'>
|
64 |
+
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
|
65 |
+
{date}
|
66 |
+
<div class='source-snippet'>{res['snippet'][:150]}...</div>
|
67 |
+
</div>
|
68 |
+
</div>
|
69 |
+
"""
|
70 |
+
sources_html += "</div>"
|
71 |
+
return sources_html
|
72 |
+
|
73 |
+
def generate_answer(prompt):
|
74 |
+
"""Generate answer using the DeepSeek model"""
|
75 |
+
inputs = tokenizer(
|
76 |
+
prompt,
|
77 |
+
return_tensors="pt",
|
78 |
+
padding=True,
|
79 |
+
truncation=True,
|
80 |
+
max_length=256, # Reduced max length for CPU
|
81 |
+
return_attention_mask=True
|
82 |
+
) # Removed .to(model.device) since we're using CPU
|
83 |
+
|
84 |
+
outputs = model.generate(
|
85 |
+
inputs.input_ids,
|
86 |
+
attention_mask=inputs.attention_mask,
|
87 |
+
max_new_tokens=128, # Reduced for faster generation on CPU
|
88 |
+
temperature=0.7,
|
89 |
+
top_p=0.95,
|
90 |
+
pad_token_id=tokenizer.eos_token_id,
|
91 |
+
do_sample=True,
|
92 |
+
early_stopping=True,
|
93 |
+
num_beams=1 # Reduced beam search for faster generation
|
94 |
+
)
|
95 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
96 |
+
|
97 |
+
def process_query(query, history):
|
98 |
+
"""Process user query with streaming effect"""
|
99 |
+
try:
|
100 |
+
if history is None:
|
101 |
+
history = []
|
102 |
+
|
103 |
+
# Get web results first
|
104 |
+
web_results = get_web_results(query)
|
105 |
+
sources_html = format_sources(web_results)
|
106 |
+
|
107 |
+
current_history = history + [[query, "*Searching...*"]]
|
108 |
+
yield {
|
109 |
+
answer_output: gr.Markdown("*Searching the web...*"),
|
110 |
+
sources_output: gr.HTML(sources_html),
|
111 |
+
search_btn: gr.Button("Searching...", interactive=False),
|
112 |
+
chat_history_display: current_history
|
113 |
+
}
|
114 |
+
|
115 |
+
# Generate answer
|
116 |
+
prompt = format_prompt(query, web_results)
|
117 |
+
answer = generate_answer(prompt)
|
118 |
+
final_answer = answer.split("Answer:")[-1].strip()
|
119 |
+
|
120 |
+
updated_history = history + [[query, final_answer]]
|
121 |
+
yield {
|
122 |
+
answer_output: gr.Markdown(final_answer),
|
123 |
+
sources_output: gr.HTML(sources_html),
|
124 |
+
search_btn: gr.Button("Search", interactive=True),
|
125 |
+
chat_history_display: updated_history
|
126 |
+
}
|
127 |
+
except Exception as e:
|
128 |
+
error_message = str(e)
|
129 |
+
if "GPU quota" in error_message:
|
130 |
+
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
131 |
+
|
132 |
+
yield {
|
133 |
+
answer_output: gr.Markdown(f"Error: {error_message}"),
|
134 |
+
sources_output: gr.HTML(sources_html),
|
135 |
+
search_btn: gr.Button("Search", interactive=True),
|
136 |
+
chat_history_display: history + [[query, f"*Error: {error_message}*"]]
|
137 |
+
}
|
138 |
+
|
139 |
+
# Update the CSS for better contrast and readability
|
140 |
+
css = """
|
141 |
+
.gradio-container {
|
142 |
+
max-width: 1200px !important;
|
143 |
+
background-color: #f7f7f8 !important;
|
144 |
+
}
|
145 |
+
|
146 |
+
#header {
|
147 |
+
text-align: center;
|
148 |
+
margin-bottom: 2rem;
|
149 |
+
padding: 2rem 0;
|
150 |
+
background: #1a1b1e;
|
151 |
+
border-radius: 12px;
|
152 |
+
color: white;
|
153 |
+
}
|
154 |
+
|
155 |
+
#header h1 {
|
156 |
+
color: white;
|
157 |
+
font-size: 2.5rem;
|
158 |
+
margin-bottom: 0.5rem;
|
159 |
+
}
|
160 |
+
|
161 |
+
#header h3 {
|
162 |
+
color: #a8a9ab;
|
163 |
+
}
|
164 |
+
|
165 |
+
.search-container {
|
166 |
+
background: #1a1b1e;
|
167 |
+
border-radius: 12px;
|
168 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
|
169 |
+
padding: 1rem;
|
170 |
+
margin-bottom: 1rem;
|
171 |
+
}
|
172 |
+
|
173 |
+
.search-box {
|
174 |
+
padding: 1rem;
|
175 |
+
background: #2c2d30;
|
176 |
+
border-radius: 8px;
|
177 |
+
margin-bottom: 1rem;
|
178 |
+
}
|
179 |
+
|
180 |
+
/* Style the input textbox */
|
181 |
+
.search-box input[type="text"] {
|
182 |
+
background: #3a3b3e !important;
|
183 |
+
border: 1px solid #4a4b4e !important;
|
184 |
+
color: white !important;
|
185 |
+
border-radius: 8px !important;
|
186 |
+
}
|
187 |
+
|
188 |
+
.search-box input[type="text"]::placeholder {
|
189 |
+
color: #a8a9ab !important;
|
190 |
+
}
|
191 |
+
|
192 |
+
/* Style the search button */
|
193 |
+
.search-box button {
|
194 |
+
background: #2563eb !important;
|
195 |
+
border: none !important;
|
196 |
+
}
|
197 |
+
|
198 |
+
/* Results area styling */
|
199 |
+
.results-container {
|
200 |
+
background: #2c2d30;
|
201 |
+
border-radius: 8px;
|
202 |
+
padding: 1rem;
|
203 |
+
margin-top: 1rem;
|
204 |
+
}
|
205 |
+
|
206 |
+
.answer-box {
|
207 |
+
background: #3a3b3e;
|
208 |
+
border-radius: 8px;
|
209 |
+
padding: 1.5rem;
|
210 |
+
color: white;
|
211 |
+
margin-bottom: 1rem;
|
212 |
+
}
|
213 |
+
|
214 |
+
.answer-box p {
|
215 |
+
color: #e5e7eb;
|
216 |
+
line-height: 1.6;
|
217 |
+
}
|
218 |
+
|
219 |
+
.sources-container {
|
220 |
+
margin-top: 1rem;
|
221 |
+
background: #2c2d30;
|
222 |
+
border-radius: 8px;
|
223 |
+
padding: 1rem;
|
224 |
+
}
|
225 |
+
|
226 |
+
.source-item {
|
227 |
+
display: flex;
|
228 |
+
padding: 12px;
|
229 |
+
margin: 8px 0;
|
230 |
+
background: #3a3b3e;
|
231 |
+
border-radius: 8px;
|
232 |
+
transition: all 0.2s;
|
233 |
+
}
|
234 |
+
|
235 |
+
.source-item:hover {
|
236 |
+
background: #4a4b4e;
|
237 |
+
}
|
238 |
+
|
239 |
+
.source-number {
|
240 |
+
font-weight: bold;
|
241 |
+
margin-right: 12px;
|
242 |
+
color: #60a5fa;
|
243 |
+
}
|
244 |
+
|
245 |
+
.source-content {
|
246 |
+
flex: 1;
|
247 |
+
}
|
248 |
+
|
249 |
+
.source-title {
|
250 |
+
color: #60a5fa;
|
251 |
+
font-weight: 500;
|
252 |
+
text-decoration: none;
|
253 |
+
display: block;
|
254 |
+
margin-bottom: 4px;
|
255 |
+
}
|
256 |
+
|
257 |
+
.source-date {
|
258 |
+
color: #a8a9ab;
|
259 |
+
font-size: 0.9em;
|
260 |
+
margin-left: 8px;
|
261 |
+
}
|
262 |
+
|
263 |
+
.source-snippet {
|
264 |
+
color: #e5e7eb;
|
265 |
+
font-size: 0.9em;
|
266 |
+
line-height: 1.4;
|
267 |
+
}
|
268 |
+
|
269 |
+
.chat-history {
|
270 |
+
max-height: 400px;
|
271 |
+
overflow-y: auto;
|
272 |
+
padding: 1rem;
|
273 |
+
background: #2c2d30;
|
274 |
+
border-radius: 8px;
|
275 |
+
margin-top: 1rem;
|
276 |
+
}
|
277 |
+
|
278 |
+
.examples-container {
|
279 |
+
background: #2c2d30;
|
280 |
+
border-radius: 8px;
|
281 |
+
padding: 1rem;
|
282 |
+
margin-top: 1rem;
|
283 |
+
}
|
284 |
+
|
285 |
+
.examples-container button {
|
286 |
+
background: #3a3b3e !important;
|
287 |
+
border: 1px solid #4a4b4e !important;
|
288 |
+
color: #e5e7eb !important;
|
289 |
+
}
|
290 |
+
|
291 |
+
/* Markdown content styling */
|
292 |
+
.markdown-content {
|
293 |
+
color: #e5e7eb !important;
|
294 |
+
}
|
295 |
+
|
296 |
+
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
|
297 |
+
color: white !important;
|
298 |
+
}
|
299 |
+
|
300 |
+
.markdown-content a {
|
301 |
+
color: #60a5fa !important;
|
302 |
+
}
|
303 |
+
|
304 |
+
/* Accordion styling */
|
305 |
+
.accordion {
|
306 |
+
background: #2c2d30 !important;
|
307 |
+
border-radius: 8px !important;
|
308 |
+
margin-top: 1rem !important;
|
309 |
+
}
|
310 |
+
"""
|
311 |
+
|
312 |
+
# Update the Gradio interface layout
|
313 |
+
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
314 |
+
chat_history = gr.State([])
|
315 |
+
|
316 |
+
with gr.Column(elem_id="header"):
|
317 |
+
gr.Markdown("# 🔍 AI Search Assistant")
|
318 |
+
gr.Markdown("### Powered by DeepSeek & Real-time Web Results")
|
319 |
+
|
320 |
+
with gr.Column(elem_classes="search-container"):
|
321 |
+
with gr.Row(elem_classes="search-box"):
|
322 |
+
search_input = gr.Textbox(
|
323 |
+
label="",
|
324 |
+
placeholder="Ask anything...",
|
325 |
+
scale=5,
|
326 |
+
container=False
|
327 |
+
)
|
328 |
+
search_btn = gr.Button("Search", variant="primary", scale=1)
|
329 |
+
|
330 |
+
with gr.Row(elem_classes="results-container"):
|
331 |
+
with gr.Column(scale=2):
|
332 |
+
with gr.Column(elem_classes="answer-box"):
|
333 |
+
answer_output = gr.Markdown(elem_classes="markdown-content")
|
334 |
+
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
335 |
+
chat_history_display = gr.Chatbot(elem_classes="chat-history")
|
336 |
+
with gr.Column(scale=1):
|
337 |
+
with gr.Column(elem_classes="sources-box"):
|
338 |
+
gr.Markdown("### Sources")
|
339 |
+
sources_output = gr.HTML()
|
340 |
+
|
341 |
+
with gr.Row(elem_classes="examples-container"):
|
342 |
+
gr.Examples(
|
343 |
+
examples=[
|
344 |
+
"What are the latest developments in quantum computing?",
|
345 |
+
"Explain the impact of AI on healthcare",
|
346 |
+
"What are the best practices for sustainable living?",
|
347 |
+
"How is climate change affecting ocean ecosystems?"
|
348 |
+
],
|
349 |
+
inputs=search_input,
|
350 |
+
label="Try these examples"
|
351 |
+
)
|
352 |
+
|
353 |
+
# Handle interactions
|
354 |
+
search_btn.click(
|
355 |
+
fn=process_query,
|
356 |
+
inputs=[search_input, chat_history],
|
357 |
+
outputs=[answer_output, sources_output, search_btn, chat_history_display]
|
358 |
+
)
|
359 |
+
|
360 |
+
# Also trigger search on Enter key
|
361 |
+
search_input.submit(
|
362 |
+
fn=process_query,
|
363 |
+
inputs=[search_input, chat_history],
|
364 |
+
outputs=[answer_output, sources_output, search_btn, chat_history_display]
|
365 |
+
)
|
366 |
+
|
367 |
+
if __name__ == "__main__":
|
368 |
+
demo.launch(share=True)
|