Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import spaces | |
from duckduckgo_search import DDGS | |
import time | |
import torch | |
from datetime import datetime | |
import os | |
import subprocess | |
import numpy as np | |
# Install required dependencies for Kokoro with better error handling | |
try: | |
subprocess.run(['git', 'lfs', 'install'], check=True) | |
if not os.path.exists('Kokoro-82M'): | |
subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True) | |
# Try installing espeak with proper package manager commands | |
try: | |
# Update package list first | |
subprocess.run(['apt-get', 'update'], check=True) | |
# Try installing espeak first (more widely available) | |
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True) | |
except subprocess.CalledProcessError: | |
print("Warning: Could not install espeak. Attempting espeak-ng...") | |
try: | |
subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True) | |
except subprocess.CalledProcessError: | |
print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.") | |
except Exception as e: | |
print(f"Warning: Initial setup error: {str(e)}") | |
print("Continuing with limited functionality...") | |
# Initialize models and tokenizers | |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.pad_token = tokenizer.eos_token | |
# Move model initialization inside a function to prevent CUDA initialization in main process | |
def init_models(): | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto", | |
offload_folder="offload", | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.float16 | |
) | |
return model | |
# Initialize Kokoro TTS with better error handling | |
try: | |
import sys | |
sys.path.append('Kokoro-82M') | |
from models import build_model | |
from kokoro import generate | |
# Don't initialize models/voices in main process for ZeroGPU compatibility | |
VOICE_CHOICES = { | |
'πΊπΈ Female (Default)': 'af', | |
'πΊπΈ Bella': 'af_bella', | |
'πΊπΈ Sarah': 'af_sarah', | |
'πΊπΈ Nicole': 'af_nicole' | |
} | |
TTS_ENABLED = True | |
except Exception as e: | |
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}") | |
TTS_ENABLED = False | |
def get_web_results(query, max_results=5): # Increased to 5 for better context | |
"""Get web search results using DuckDuckGo""" | |
try: | |
with DDGS() as ddgs: | |
results = list(ddgs.text(query, max_results=max_results)) | |
return [{ | |
"title": result.get("title", ""), | |
"snippet": result["body"], | |
"url": result["href"], | |
"date": result.get("published", "") | |
} for result in results] | |
except Exception as e: | |
return [] | |
def format_prompt(query, context): | |
"""Format the prompt with web context""" | |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context]) | |
return f"""You are an intelligent search assistant. Answer the user's query using the provided web context. | |
Current Time: {current_time} | |
Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context. | |
Query: {query} | |
Web Context: | |
{context_lines} | |
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc. If the query is about elections, clearly specify which year and type of election you're discussing. | |
Answer:""" | |
def format_sources(web_results): | |
"""Format sources with more details""" | |
if not web_results: | |
return "<div class='no-sources'>No sources available</div>" | |
sources_html = "<div class='sources-container'>" | |
for i, res in enumerate(web_results, 1): | |
title = res["title"] or "Source" | |
date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else "" | |
sources_html += f""" | |
<div class='source-item'> | |
<div class='source-number'>[{i}]</div> | |
<div class='source-content'> | |
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a> | |
{date} | |
<div class='source-snippet'>{res['snippet'][:150]}...</div> | |
</div> | |
</div> | |
""" | |
sources_html += "</div>" | |
return sources_html | |
# Wrap the answer generation with spaces.GPU decorator | |
def generate_answer(prompt): | |
"""Generate answer using the DeepSeek model""" | |
# Initialize model inside the GPU-decorated function | |
model = init_models() | |
inputs = tokenizer( | |
prompt, | |
return_tensors="pt", | |
padding=True, | |
truncation=True, | |
max_length=512, | |
return_attention_mask=True | |
).to(model.device) | |
outputs = model.generate( | |
inputs.input_ids, | |
attention_mask=inputs.attention_mask, | |
max_new_tokens=256, | |
temperature=0.7, | |
top_p=0.95, | |
pad_token_id=tokenizer.eos_token_id, | |
do_sample=True, | |
early_stopping=True | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Similarly wrap TTS generation with spaces.GPU | |
def generate_speech_with_gpu(text, voice_name='af'): | |
"""Generate speech from text using Kokoro TTS model with GPU handling""" | |
try: | |
# Initialize TTS model and voice inside GPU function | |
device = 'cuda' | |
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device) | |
VOICEPACK = torch.load(f'Kokoro-82M/voices/{voice_name}.pt', weights_only=True).to(device) | |
# Clean the text | |
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')]) | |
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '') | |
# Split long text into chunks | |
max_chars = 1000 | |
chunks = [] | |
if len(clean_text) > max_chars: | |
sentences = clean_text.split('.') | |
current_chunk = "" | |
for sentence in sentences: | |
if len(current_chunk) + len(sentence) < max_chars: | |
current_chunk += sentence + "." | |
else: | |
if current_chunk: | |
chunks.append(current_chunk) | |
current_chunk = sentence + "." | |
if current_chunk: | |
chunks.append(current_chunk) | |
else: | |
chunks = [clean_text] | |
# Generate audio for each chunk | |
audio_chunks = [] | |
for chunk in chunks: | |
if chunk.strip(): # Only process non-empty chunks | |
chunk_audio, _ = generate(TTS_MODEL, chunk.strip(), VOICEPACK, lang='a') | |
if isinstance(chunk_audio, torch.Tensor): | |
chunk_audio = chunk_audio.cpu().numpy() | |
audio_chunks.append(chunk_audio) | |
# Concatenate chunks if we have any | |
if audio_chunks: | |
if len(audio_chunks) > 1: | |
final_audio = np.concatenate(audio_chunks) | |
else: | |
final_audio = audio_chunks[0] | |
return (24000, final_audio) | |
return None | |
except Exception as e: | |
print(f"Error generating speech: {str(e)}") | |
import traceback | |
traceback.print_exc() | |
return None | |
def process_query(query, history, selected_voice='af'): | |
"""Process user query with streaming effect""" | |
try: | |
if history is None: | |
history = [] | |
# Get web results first | |
web_results = get_web_results(query) | |
sources_html = format_sources(web_results) | |
current_history = history + [[query, "*Searching...*"]] | |
yield { | |
answer_output: gr.Markdown("*Searching the web...*"), | |
sources_output: gr.HTML(sources_html), | |
search_btn: gr.Button("Searching...", interactive=False), | |
chat_history_display: current_history, | |
audio_output: None | |
} | |
# Generate answer | |
prompt = format_prompt(query, web_results) | |
answer = generate_answer(prompt) | |
final_answer = answer.split("Answer:")[-1].strip() | |
# Generate speech from the answer | |
if TTS_ENABLED: | |
try: | |
yield { | |
answer_output: gr.Markdown(final_answer), | |
sources_output: gr.HTML(sources_html), | |
search_btn: gr.Button("Generating audio...", interactive=False), | |
chat_history_display: history + [[query, final_answer]], | |
audio_output: None | |
} | |
audio = generate_speech_with_gpu(final_answer, selected_voice) | |
if audio is None: | |
print("Failed to generate audio") | |
except Exception as e: | |
print(f"Error in speech generation: {str(e)}") | |
audio = None | |
else: | |
audio = None | |
updated_history = history + [[query, final_answer]] | |
yield { | |
answer_output: gr.Markdown(final_answer), | |
sources_output: gr.HTML(sources_html), | |
search_btn: gr.Button("Search", interactive=True), | |
chat_history_display: updated_history, | |
audio_output: audio if audio is not None else gr.Audio(value=None) | |
} | |
except Exception as e: | |
error_message = str(e) | |
if "GPU quota" in error_message: | |
error_message = "β οΈ GPU quota exceeded. Please try again later when the daily quota resets." | |
yield { | |
answer_output: gr.Markdown(f"Error: {error_message}"), | |
sources_output: gr.HTML(sources_html), | |
search_btn: gr.Button("Search", interactive=True), | |
chat_history_display: history + [[query, f"*Error: {error_message}*"]], | |
audio_output: None | |
} | |
# Update the CSS for better contrast and readability | |
css = """ | |
.gradio-container { | |
max-width: 1200px !important; | |
background-color: #f7f7f8 !important; | |
} | |
#header { | |
text-align: center; | |
margin-bottom: 2rem; | |
padding: 2rem 0; | |
background: #1a1b1e; | |
border-radius: 12px; | |
color: white; | |
} | |
#header h1 { | |
color: white; | |
font-size: 2.5rem; | |
margin-bottom: 0.5rem; | |
} | |
#header h3 { | |
color: #a8a9ab; | |
} | |
.search-container { | |
background: #1a1b1e; | |
border-radius: 12px; | |
box-shadow: 0 4px 12px rgba(0,0,0,0.1); | |
padding: 1rem; | |
margin-bottom: 1rem; | |
} | |
.search-box { | |
padding: 1rem; | |
background: #2c2d30; | |
border-radius: 8px; | |
margin-bottom: 1rem; | |
} | |
/* Style the input textbox */ | |
.search-box input[type="text"] { | |
background: #3a3b3e !important; | |
border: 1px solid #4a4b4e !important; | |
color: white !important; | |
border-radius: 8px !important; | |
} | |
.search-box input[type="text"]::placeholder { | |
color: #a8a9ab !important; | |
} | |
/* Style the search button */ | |
.search-box button { | |
background: #2563eb !important; | |
border: none !important; | |
} | |
/* Results area styling */ | |
.results-container { | |
background: #2c2d30; | |
border-radius: 8px; | |
padding: 1rem; | |
margin-top: 1rem; | |
} | |
.answer-box { | |
background: #3a3b3e; | |
border-radius: 8px; | |
padding: 1.5rem; | |
color: white; | |
margin-bottom: 1rem; | |
} | |
.answer-box p { | |
color: #e5e7eb; | |
line-height: 1.6; | |
} | |
.sources-container { | |
margin-top: 1rem; | |
background: #2c2d30; | |
border-radius: 8px; | |
padding: 1rem; | |
} | |
.source-item { | |
display: flex; | |
padding: 12px; | |
margin: 8px 0; | |
background: #3a3b3e; | |
border-radius: 8px; | |
transition: all 0.2s; | |
} | |
.source-item:hover { | |
background: #4a4b4e; | |
} | |
.source-number { | |
font-weight: bold; | |
margin-right: 12px; | |
color: #60a5fa; | |
} | |
.source-content { | |
flex: 1; | |
} | |
.source-title { | |
color: #60a5fa; | |
font-weight: 500; | |
text-decoration: none; | |
display: block; | |
margin-bottom: 4px; | |
} | |
.source-date { | |
color: #a8a9ab; | |
font-size: 0.9em; | |
margin-left: 8px; | |
} | |
.source-snippet { | |
color: #e5e7eb; | |
font-size: 0.9em; | |
line-height: 1.4; | |
} | |
.chat-history { | |
max-height: 400px; | |
overflow-y: auto; | |
padding: 1rem; | |
background: #2c2d30; | |
border-radius: 8px; | |
margin-top: 1rem; | |
} | |
.examples-container { | |
background: #2c2d30; | |
border-radius: 8px; | |
padding: 1rem; | |
margin-top: 1rem; | |
} | |
.examples-container button { | |
background: #3a3b3e !important; | |
border: 1px solid #4a4b4e !important; | |
color: #e5e7eb !important; | |
} | |
/* Markdown content styling */ | |
.markdown-content { | |
color: #e5e7eb !important; | |
} | |
.markdown-content h1, .markdown-content h2, .markdown-content h3 { | |
color: white !important; | |
} | |
.markdown-content a { | |
color: #60a5fa !important; | |
} | |
/* Accordion styling */ | |
.accordion { | |
background: #2c2d30 !important; | |
border-radius: 8px !important; | |
margin-top: 1rem !important; | |
} | |
.voice-selector { | |
margin-top: 1rem; | |
background: #2c2d30; | |
border-radius: 8px; | |
padding: 0.5rem; | |
} | |
.voice-selector select { | |
background: #3a3b3e !important; | |
color: white !important; | |
border: 1px solid #4a4b4e !important; | |
} | |
""" | |
# Update the Gradio interface layout | |
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo: | |
chat_history = gr.State([]) | |
with gr.Column(elem_id="header"): | |
gr.Markdown("# π AI Search Assistant") | |
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice") | |
with gr.Column(elem_classes="search-container"): | |
with gr.Row(elem_classes="search-box"): | |
search_input = gr.Textbox( | |
label="", | |
placeholder="Ask anything...", | |
scale=5, | |
container=False | |
) | |
search_btn = gr.Button("Search", variant="primary", scale=1) | |
voice_select = gr.Dropdown( | |
choices=list(VOICE_CHOICES.items()), | |
value='af', | |
label="Select Voice", | |
elem_classes="voice-selector" | |
) | |
with gr.Row(elem_classes="results-container"): | |
with gr.Column(scale=2): | |
with gr.Column(elem_classes="answer-box"): | |
answer_output = gr.Markdown(elem_classes="markdown-content") | |
with gr.Row(): | |
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player") | |
with gr.Accordion("Chat History", open=False, elem_classes="accordion"): | |
chat_history_display = gr.Chatbot(elem_classes="chat-history") | |
with gr.Column(scale=1): | |
with gr.Column(elem_classes="sources-box"): | |
gr.Markdown("### Sources") | |
sources_output = gr.HTML() | |
with gr.Row(elem_classes="examples-container"): | |
gr.Examples( | |
examples=[ | |
"What are the latest developments in quantum computing?", | |
"Explain the impact of AI on healthcare", | |
"What are the best practices for sustainable living?", | |
"How is climate change affecting ocean ecosystems?" | |
], | |
inputs=search_input, | |
label="Try these examples" | |
) | |
# Handle interactions | |
search_btn.click( | |
fn=process_query, | |
inputs=[search_input, chat_history, voice_select], | |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output] | |
) | |
# Also trigger search on Enter key | |
search_input.submit( | |
fn=process_query, | |
inputs=[search_input, chat_history, voice_select], | |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output] | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |