Spaces:
Sleeping
Sleeping
import os | |
import gradio | |
from PIL import Image | |
from timeit import default_timer as timer | |
from tensorflow import keras | |
import torch | |
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM, create_optimizer, DataCollatorForSeq2Seq | |
import numpy as np | |
loaded_model = TFAutoModelForSeq2SeqLM.from_pretrained("runaksh/financial_summary_T5_base") | |
loaded_tokenizer = AutoTokenizer.from_pretrained("runaksh/financial_summary_T5_base") | |
# Function for generating summary | |
def generate_summary(text,min_length=55,max_length=80): | |
text = "summarize: "+text | |
input = loaded_tokenizer(text,max_length=512,truncation=True,return_tensors='tf').input_ids | |
op=loaded_model.generate(input,min_length=min_length,max_length=max_length) | |
decoded_op = loaded_tokenizer.batch_decode(op,skip_special_tokens=True) | |
return decoded_op | |
title = "Financial News Summary" | |
description = "Enter the news" | |
# Gradio elements | |
# Input from user | |
in_prompt = gradio.components.Textbox(lines=2, label='Enter the News') | |
# Output response | |
out_response = gradio.components.Textbox(label='Summary') | |
# Gradio interface to generate UI link | |
iface = gradio.Interface(fn=generate_summary, | |
inputs = in_prompt, | |
outputs = out_response, | |
title=title, | |
description=description | |
) | |
iface.launch(debug = True) |