import gradio as gr import os from transformers import AutoModelForCausalLM, AutoTokenizer # Load model and tokenizer model_name = "rkwsuper/lora_model" # Use an environment variable or secret for the token auth_token = os.getenv("HF_TOKEN") # Automatically fetches the token if set as an environment variable tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token) model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=auth_token) # Define the function for inference def generate_text(prompt, max_length=100, temperature=1.0): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( inputs["input_ids"], max_length=max_length, temperature=temperature, pad_token_id=tokenizer.eos_token_id ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create the Gradio interface iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Enter Prompt"), gr.Slider(10, 300, value=100, step=10, label="Max Length"), gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Temperature") ], outputs="text", title="Hugging Face Model Text Generator", description="This interface generates text based on your input using a fine-tuned Hugging Face model." ) # Launch if __name__ == "__main__": iface.launch()