Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load model and tokenizer | |
model_name = "rkwsuper/lora_model" | |
# Use an environment variable or secret for the token | |
auth_token = os.getenv("HF_TOKEN") # Automatically fetches the token if set as an environment variable | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token) | |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=auth_token) | |
# Define the function for inference | |
def generate_text(prompt, max_length=100, temperature=1.0): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate( | |
inputs["input_ids"], | |
max_length=max_length, | |
temperature=temperature, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(label="Enter Prompt"), | |
gr.Slider(10, 300, value=100, step=10, label="Max Length"), | |
gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Temperature") | |
], | |
outputs="text", | |
title="Hugging Face Model Text Generator", | |
description="This interface generates text based on your input using a fine-tuned Hugging Face model." | |
) | |
# Launch | |
if __name__ == "__main__": | |
iface.launch() | |