id2223-lab2 / app.py
rkwsuper's picture
fix
f2b7bc7
raw
history blame
1.37 kB
import gradio as gr
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model_name = "rkwsuper/lora_model"
# Use an environment variable or secret for the token
auth_token = os.getenv("HF_TOKEN") # Automatically fetches the token if set as an environment variable
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token)
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=auth_token)
# Define the function for inference
def generate_text(prompt, max_length=100, temperature=1.0):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
inputs["input_ids"],
max_length=max_length,
temperature=temperature,
pad_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Create the Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Enter Prompt"),
gr.Slider(10, 300, value=100, step=10, label="Max Length"),
gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Temperature")
],
outputs="text",
title="Hugging Face Model Text Generator",
description="This interface generates text based on your input using a fine-tuned Hugging Face model."
)
# Launch
if __name__ == "__main__":
iface.launch()