Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,14 @@ import torch
|
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
-
# Configurar
|
7 |
os.environ["TRANSFORMERS_CACHE"] = "/root/.cache/huggingface/"
|
|
|
8 |
|
9 |
# Nombre del modelo
|
10 |
model_name = "BSC-LT/ALIA-40b"
|
11 |
|
12 |
-
#
|
13 |
try:
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=os.getenv("TRANSFORMERS_CACHE"), local_files_only=True)
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -17,7 +18,8 @@ try:
|
|
17 |
cache_dir=os.getenv("TRANSFORMERS_CACHE"),
|
18 |
local_files_only=True,
|
19 |
device_map="auto",
|
20 |
-
|
|
|
21 |
)
|
22 |
print("Modelo cargado desde caché.")
|
23 |
except Exception as e:
|
@@ -27,41 +29,31 @@ except Exception as e:
|
|
27 |
model_name,
|
28 |
cache_dir=os.getenv("TRANSFORMERS_CACHE"),
|
29 |
device_map="auto",
|
30 |
-
|
|
|
31 |
)
|
32 |
-
|
33 |
-
|
34 |
-
local_path = "/root/model_storage/"
|
35 |
-
tokenizer.save_pretrained(local_path)
|
36 |
-
model.save_pretrained(local_path)
|
37 |
print("Modelo guardado en caché para futuras cargas.")
|
38 |
|
39 |
-
#
|
40 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
41 |
-
model.to(device)
|
42 |
print(f"Modelo cargado en: {next(model.parameters()).device}")
|
43 |
|
44 |
def generar_texto(entrada):
|
45 |
-
# Liberar caché
|
46 |
-
torch.cuda.empty_cache()
|
47 |
|
48 |
-
|
49 |
-
input_ids = tokenizer(entrada, return_tensors="pt").input_ids.to(device)
|
50 |
|
51 |
-
# Generar texto con parámetros optimizados
|
52 |
output = model.generate(
|
53 |
input_ids,
|
54 |
-
max_length=
|
55 |
-
temperature=0.7,
|
56 |
-
top_p=0.9,
|
57 |
-
num_return_sequences=1
|
58 |
-
do_sample=True
|
59 |
-
use_cache=True # Optimiza reutilizando cálculos previos
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
texto_generado = tokenizer.decode(output[0], skip_special_tokens=True)
|
64 |
-
return texto_generado
|
65 |
|
66 |
# Crear la interfaz de Gradio
|
67 |
interfaz = gr.Interface(
|
|
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
+
# Configurar caché y gestión de memoria
|
7 |
os.environ["TRANSFORMERS_CACHE"] = "/root/.cache/huggingface/"
|
8 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
9 |
|
10 |
# Nombre del modelo
|
11 |
model_name = "BSC-LT/ALIA-40b"
|
12 |
|
13 |
+
# Cargar modelo desde caché si es posible
|
14 |
try:
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=os.getenv("TRANSFORMERS_CACHE"), local_files_only=True)
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
18 |
cache_dir=os.getenv("TRANSFORMERS_CACHE"),
|
19 |
local_files_only=True,
|
20 |
device_map="auto",
|
21 |
+
offload_folder="offload_cache",
|
22 |
+
torch_dtype=torch.bfloat16
|
23 |
)
|
24 |
print("Modelo cargado desde caché.")
|
25 |
except Exception as e:
|
|
|
29 |
model_name,
|
30 |
cache_dir=os.getenv("TRANSFORMERS_CACHE"),
|
31 |
device_map="auto",
|
32 |
+
offload_folder="offload_cache",
|
33 |
+
torch_dtype=torch.bfloat16
|
34 |
)
|
35 |
+
tokenizer.save_pretrained("/root/model_storage/")
|
36 |
+
model.save_pretrained("/root/model_storage/")
|
|
|
|
|
|
|
37 |
print("Modelo guardado en caché para futuras cargas.")
|
38 |
|
39 |
+
# Mostrar en qué dispositivo está el modelo
|
|
|
|
|
40 |
print(f"Modelo cargado en: {next(model.parameters()).device}")
|
41 |
|
42 |
def generar_texto(entrada):
|
43 |
+
torch.cuda.empty_cache() # Liberar caché antes de inferencia
|
|
|
44 |
|
45 |
+
input_ids = tokenizer(entrada, return_tensors="pt").input_ids.to("cuda")
|
|
|
46 |
|
|
|
47 |
output = model.generate(
|
48 |
input_ids,
|
49 |
+
max_length=50,
|
50 |
+
temperature=0.7,
|
51 |
+
top_p=0.9,
|
52 |
+
num_return_sequences=1,
|
53 |
+
do_sample=True
|
|
|
54 |
)
|
55 |
|
56 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
57 |
|
58 |
# Crear la interfaz de Gradio
|
59 |
interfaz = gr.Interface(
|