Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,35 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
import logging
|
4 |
-
from huggingface_hub import InferenceClient
|
5 |
|
6 |
-
# Configurar logging para depuraci贸n
|
7 |
-
logging.basicConfig(
|
8 |
-
level=logging.INFO,
|
9 |
-
format="%(asctime)s - %(levelname)s - %(message)s"
|
10 |
-
)
|
11 |
|
12 |
-
# Obtener el token de Hugging Face de variables de entorno (secret)
|
13 |
-
hf_token = os.getenv("HF_TOKEN2")
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
raise ValueError("El token de Hugging Face no est谩 configurado. Agrega 'HF_TOKEN' como variable de entorno.")
|
18 |
|
19 |
-
|
|
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
logging.info("Cliente de Hugging Face inicializado correctamente.")
|
25 |
-
except Exception as e:
|
26 |
-
logging.error(f"Error al inicializar el cliente de Hugging Face: {e}")
|
27 |
-
raise
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
|
32 |
-
system_message,
|
33 |
-
max_tokens,
|
34 |
-
temperature,
|
35 |
-
top_p,
|
36 |
-
):
|
37 |
-
logging.info("Generando respuesta para el mensaje del usuario.")
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
prompt=prompt,
|
51 |
-
max_new_tokens=max_tokens,
|
52 |
-
temperature=temperature,
|
53 |
-
top_p=top_p,
|
54 |
-
stream=True
|
55 |
-
):
|
56 |
-
response += message
|
57 |
-
yield response
|
58 |
-
|
59 |
-
logging.info("Respuesta generada correctamente.")
|
60 |
-
|
61 |
-
except Exception as e:
|
62 |
-
logging.error(f"Error durante la generaci贸n de texto: {e}", exc_info=True)
|
63 |
-
yield f"Error: {str(e)}. Por favor, int茅ntalo nuevamente."
|
64 |
-
|
65 |
-
"""
|
66 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
67 |
-
"""
|
68 |
-
demo = gr.Interface(
|
69 |
-
fn=respond,
|
70 |
-
inputs=[
|
71 |
-
gr.Textbox(value="Eres un chatbot muy amigable.", label="Mensaje del sistema"),
|
72 |
-
gr.Chatbot(type="messages"),
|
73 |
-
gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max new tokens"),
|
74 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
75 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"),
|
76 |
-
gr.Textbox(value="", label="Mensaje del usuario"), # Asegurar los inputs correctos
|
77 |
-
],
|
78 |
outputs="text",
|
79 |
-
title="
|
80 |
-
description="
|
81 |
)
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
-
|
85 |
-
demo.launch(share=True)
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
3 |
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
6 |
|
7 |
+
# Especifica el nombre del modelo
|
8 |
+
model_name = "BSC-LT/ALIA-40b"
|
9 |
|
10 |
+
# Cargar el tokenizador y el modelo
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def generar_texto(entrada):
|
15 |
+
# Tokenizar la entrada
|
16 |
+
input_ids = tokenizer.encode(entrada, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Generar texto con el modelo
|
19 |
+
output = model.generate(input_ids, max_length=100, num_return_sequences=1)
|
20 |
+
|
21 |
+
# Decodificar y retornar el texto generado
|
22 |
+
texto_generado = tokenizer.decode(output[0], skip_special_tokens=True)
|
23 |
+
return texto_generado
|
24 |
+
|
25 |
+
# Crear la interfaz de Gradio
|
26 |
+
interfaz = gr.Interface(
|
27 |
+
fn=generar_texto,
|
28 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Escribe tu prompt aqu铆..."),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
outputs="text",
|
30 |
+
title="Generador de Texto con ALIA-40b",
|
31 |
+
description="Este modelo genera texto utilizando ALIA-40b, un modelo LLM entrenado por BSC-LT."
|
32 |
)
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
+
interfaz.launch()
|
|
|
|