Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import datetime | |
import numpy as np | |
import datetime | |
import all_model | |
def show_information(): | |
# Show Information about the selected Stock | |
st.header('🤫Did you know💡') | |
st.caption("Analyzing data from 2015 to 2021") | |
st.text("1) There is a 60% chance of gap up opening in any random trade in Reliance 😮 ") | |
st.text("2) 1% of the gap up is more than Rs:15.00 i.e more quantity == more profit😇") | |
st.text("3) Median, Q3 or 75th percentile have increased from 2015(1.8) to 2021(11.55)💰") | |
def select_date(): | |
# Select the date for Prediction | |
selected_date = st.date_input( | |
"Which date you want to check", | |
min_value= datetime.date(2022, 3, 1), | |
max_value = datetime.date(2022, 3, 8), | |
value = datetime.date(2022, 3, 7)) | |
st.write('Your selected date is:', selected_date) | |
return selected_date | |
# @st.cache | |
# def prepare_data_for_selected_date(): | |
# df = pd.read_csv("dataset/reliance_30min.csv") | |
# df = helper.format_date(df) | |
# df = helper.replace_vol(df) | |
# df = helper.feature_main(df) | |
# df.to_csv('dataset/processed_reliance30m.csv') | |
# return df | |
def freature_data(date): | |
# st.dataframe(df.loc[str(date)]) | |
df = pd.read_csv("processed_reliance30m.csv",parse_dates=['Datetime']).set_index('Datetime') | |
df = df.loc[str(date)] | |
df = df.drop(columns=['date'],axis=1) | |
return df | |
def show_prediction_result(prepared_data): | |
model = all_model.load_model() | |
result = all_model.prediction(model,prepared_data) | |
return result | |
def main(): | |
st.title('PROFIT IN THE MORNING!') | |
option = st.selectbox( | |
'Which stock would you like to analyze?', | |
('None','Reliance', 'Airtel', 'State Bank Of India')) | |
st.write('You selected:', option) | |
if option=="Reliance": | |
data_link = ("C:/Users/Rajdeep Borgohain.000/Desktop/reliance_30min.csv") | |
dateSelect = False | |
# About Reliance Stock | |
show_information() | |
selected_date = select_date() | |
# prepared_data = prepare_data_for_selected_date() | |
prepared_data = freature_data(selected_date) | |
score = show_prediction_result(prepared_data) | |
selected_date+=datetime.timedelta(days=1) | |
if score == 'nan': | |
text = f'No data avaliable for the selected date {selected_date}' | |
st.warning(text) | |
elif score >= 0.5: | |
score = np.round(score,4)*100 | |
text = f'The chances of Gap up on: {selected_date} is {score}%' | |
st.success(text) | |
elif score < 0.5: | |
text = f'The chances of Gap up on: {selected_date} is {score}' | |
st.error(text) | |
else: | |
st.text('Data Not Avaliable!') | |
if __name__ == "__main__": | |
main() |