File size: 13,974 Bytes
550b30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# import matplotlib.pyplot as plt
# %matplotlib inline
# import seaborn as sns
import pickle
import pandas as pd
import re
import os
import tensorflow as tf
from tensorflow.keras.layers import Embedding, LSTM, Dense,Bidirectional
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras import backend as K
import numpy as np
import string
from string import digits
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
import nltk
from nltk.tokenize import word_tokenize
from tqdm import tqdm
from Data import Dataset,Dataloder



"""########################################------MODEL------########################################
"""

########################################------Encoder model------########################################
class Encoder(tf.keras.Model):


    def __init__(self,inp_vocab_size,embedding_size,lstm_size,input_length):
        super().__init__()

        self.inp_vocab_size = inp_vocab_size
        self.embedding_size = embedding_size
        self.lstm_size = lstm_size
        self.input_length = input_length
        #Initialize Embedding layer

    def build(self,input_shape):
        self.embedding = Embedding(input_dim=self.inp_vocab_size, output_dim=self.embedding_size,
                                  input_length=self.input_length,trainable=True,name="encoder_embed")
        #Intialize Encoder LSTM layer
        self.bilstm = tf.keras.layers.Bidirectional(LSTM(units = self.lstm_size,return_sequences=True,return_state=True),merge_mode='sum')

    def call(self,input_sequence,initial_state):
        '''
          Input:Input_sequence[batch_size,input_length]
                Initial_state 4x[batch_size,encoder_units]
          
          Output: lstm_enc_output [batch_size,input_length,encoder_units]
                  forward_h/c & backward_h/c [batch_size,encoder_units]
        '''
        # print("initial_state",len(initial_state))
        input_embd = self.embedding(input_sequence)
        lstm_enc_output, forward_h, forward_c, backward_h, backward_c = self.bilstm(input_embd,initial_state)
        return lstm_enc_output, forward_h, forward_c, backward_h, backward_c
        # return lstm_enc_output, forward_h, forward_c

    
    def initialize_states(self,batch_size):
      '''
      Given a batch size it will return intial hidden state and intial cell state.
      If batch size is 32- Hidden state is zeros of size [32,lstm_units], cell state zeros is of size [32,lstm_units]
      '''
      self.lstm_state_h = tf.random.uniform(shape=[batch_size,self.lstm_size],dtype=tf.float32)
      self.lstm_state_c = tf.random.uniform(shape=[batch_size,self.lstm_size],dtype=tf.float32)
      return self.lstm_state_h,self.lstm_state_c

    def initialize_states_bidirectional(self,batch_size):
      states = [tf.zeros((batch_size, self.lstm_size)) for i in range(4)]
      return states



########################################------Attention model------########################################
class Attention(tf.keras.layers.Layer):
    def __init__(self,scoring_function, att_units):
        super().__init__()
        self.att_units = att_units
        self.scoring_function = scoring_function
        # self.batch_size = batch_size
        # Please go through the reference notebook and research paper to complete the scoring functions

        if self.scoring_function=='dot':
            pass
        
        elif scoring_function == 'general':
            self.dense = Dense(self.att_units)
        
        elif scoring_function == 'concat':
            self.dense = tf.keras.layers.Dense(att_units, activation='tanh')
            self.dense1 = tf.keras.layers.Dense(1)
  
  
    def call(self,decoder_hidden_state,encoder_output):


    
        if self.scoring_function == 'dot':
            decoder_hidden_state = tf.expand_dims(decoder_hidden_state,axis=2)
            similarity = tf.matmul(encoder_output,decoder_hidden_state)
            weights    = tf.nn.softmax(similarity,axis=1)
            context_vector = tf.matmul(weights,encoder_output,transpose_a=True)
            context_vector = tf.squeeze(context_vector, axis=1)
            return context_vector,weights

        elif self.scoring_function == 'general':
            decoder_hidden_state=tf.expand_dims(decoder_hidden_state, 1)
            score = tf.matmul(decoder_hidden_state, self.dense(
                    encoder_output), transpose_b=True)
            attention_weights = tf.keras.activations.softmax(score, axis=-1) 
            context_vector = tf.matmul(attention_weights, encoder_output)
            context_vector=tf.reduce_sum(context_vector, axis=1)
            attention_weights=tf.reduce_sum(attention_weights, axis=1)
            attention_weights=tf.expand_dims(attention_weights, 2)
            return context_vector,attention_weights

        elif self.scoring_function == 'concat':
            decoder_hidden_state=tf.expand_dims(decoder_hidden_state, 1)
            decoder_hidden_state = tf.tile(
                        decoder_hidden_state, [1,30, 1])
            score = self.dense1(
                        self.dense(tf.concat((decoder_hidden_state, encoder_output), axis=-1)))
            score = tf.transpose(score, [0, 2, 1])
            attention_weights = tf.keras.activations.softmax(score, axis=-1) 
            context_vector = tf.matmul(attention_weights, encoder_output)
            context_vector=tf.reduce_sum(context_vector, axis=1)
            attention_weights=tf.reduce_sum(attention_weights, axis=1)
            attention_weights=tf.expand_dims(attention_weights, 2)
            
            return context_vector,attention_weights
    

########################################------OneStepDecoder model------########################################
class OneStepDecoder(tf.keras.Model):
    def __init__(self,tar_vocab_size, embedding_dim, input_length, dec_units ,score_fun ,att_units):

      # Initialize decoder embedding layer, LSTM and any other objects needed
      super().__init__()
      self.tar_vocab_size = tar_vocab_size
      self.embedding_dim = embedding_dim
      self.input_length = input_length
      self.dec_units = dec_units
      self.score_fun = score_fun
      self.att_units = att_units

    def build(self,input_shape):
      self.attention = Attention('concat', self.att_units)
      self.embedding = Embedding(input_dim=self.tar_vocab_size,output_dim=self.embedding_dim,
                                 input_length=self.input_length,mask_zero=True,trainable=True,name="Decoder_Embed")
      self.bilstm = tf.keras.layers.Bidirectional(LSTM(units = self.dec_units,return_sequences=True,return_state=True),merge_mode='sum')
      self.dense = Dense(self.tar_vocab_size)
      


    def call(self,input_to_decoder, encoder_output, f_state_h,f_state_c,b_state_h,b_state_c):
        dec_embd = self.embedding(input_to_decoder)
        context_vectors,attention_weights = self.attention(f_state_h,encoder_output)
        context_vectors_ = tf.expand_dims(context_vectors,axis=1)
        concat_vector = tf.concat([dec_embd,context_vectors_],axis=2)
        states = [f_state_h,f_state_c,b_state_h,b_state_c]
        decoder_outputs,dec_f_state_h,dec_f_state_c,dec_b_state_h,dec_b_state_c = self.bilstm(concat_vector,states)
        decoder_outputs = tf.squeeze(decoder_outputs,axis=1)
        dense_output = self.dense(decoder_outputs)
        
        return dense_output,dec_f_state_h,dec_f_state_c,attention_weights,context_vectors
    
    
########################################------Decoder model------########################################
class Decoder(tf.keras.Model):
    def __init__(self,out_vocab_size, embedding_dim, input_length, dec_units ,score_fun ,att_units):
      #Intialize necessary variables and create an object from the class onestepdecoder
      super().__init__()
      self.out_vocab_size = out_vocab_size
      self.embedding_dim = embedding_dim
      self.input_length = input_length
      self.dec_units = dec_units
      self.score_fun = score_fun
      self.att_units = att_units

    def build(self,input_shape):
      self.onestep_decoder = OneStepDecoder(self.out_vocab_size, self.embedding_dim, self.input_length, self.dec_units ,self.score_fun ,
                                            self.att_units)

    def call(self, input_to_decoder,encoder_output,f_decoder_hidden_state,f_decoder_cell_state,b_decoder_hidden_state,b_decoder_cell_state ):

      all_outputs = tf.TensorArray(tf.float32, size=self.input_length,name="output_array")
      
      for timestep in range(self.input_length):
        output,state_h,state_c,attention_weights,context_vector = self.onestep_decoder(input_to_decoder[:,timestep:timestep+1],encoder_output,
                                                                                       f_decoder_hidden_state,f_decoder_cell_state,b_decoder_hidden_state,b_decoder_cell_state)
        all_outputs = all_outputs.write(timestep,output)

      all_outputs = tf.transpose(all_outputs.stack(),[1,0,2])
      
      return all_outputs
  
########################################------encoder_decoder model------########################################
class encoder_decoder(tf.keras.Model):
    def __init__(self,out_vocab_size,inp_vocab_size,embedding_dim,embedding_size,in_input_length,tar_input_length,dec_units,lstm_size,att_units,batch_size):
        super().__init__()
        #Intialize objects from encoder decoder
        self.out_vocab_size = out_vocab_size
        self.inp_vocab_size = inp_vocab_size

        self.embedding_dim_target = embedding_dim
        self.embedding_dim_input = embedding_size
        self.in_input_length = in_input_length
        self.tar_input_length = tar_input_length

        self.dec_lstm_size = dec_units 
        self.enc_lstm_size = lstm_size

        self.att_units = att_units
        self.batch_size = batch_size

    def build(self,input_shape):
        self.encoder = Encoder(self.inp_vocab_size,self.embedding_dim_input,self.enc_lstm_size,self.in_input_length)
        self.decoder = Decoder(self.out_vocab_size,self.embedding_dim_target, self.tar_input_length, self.dec_lstm_size ,'general' ,self.att_units)
    
    def call(self,data):
        input_sequence, target_sequence = data[0],data[1]
        # print(input_sequence.shape)
        encoder_initial_state = self.encoder.initialize_states_bidirectional(self.batch_size)
        # print(len(encoder_initial_state))
        encoder_output,f_encoder_state_h,f_encoder_state_c,b_encoder_state_h,b_encoder_state_c = self.encoder(input_sequence,encoder_initial_state)
        decoder_output = self.decoder(target_sequence,encoder_output,f_encoder_state_h,f_encoder_state_c,b_encoder_state_h,b_encoder_state_c)
        return decoder_output


def loss_function(real, pred):
    loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=True)
    mask = tf.math.logical_not(tf.math.equal(real, 0))
    loss_ = loss_object(real, pred)
    mask = tf.cast(mask, dtype=loss_.dtype)
    loss_ *= mask

    return tf.reduce_mean(loss_)

def accuracy(real,pred):
    pred_val = K.cast(K.argmax(pred,axis=-1),dtype='float32')
    real_val = K.cast(K.equal(real,pred_val),dtype='float32')

    mask = K.cast(K.greater(real,0),dtype='float32')
    n_correct = K.sum(mask*real_val)
    n_total = K.sum(mask)

    return n_correct/n_total

def load_weights():
    """======================================================LOADING======================================================"""
    # Dataset
    with open('dataset/30_length/train.pickle', 'rb') as handle:
        train = pickle.load(handle)

    with open('dataset/30_length/validation.pickle', 'rb') as handle:
        validation = pickle.load(handle)

    # Tokenizer
    with open('tokenizer/30_tokenizer_eng.pickle', 'rb') as handle:
        tokenizer_eng = pickle.load(handle)

    with open('tokenizer/30_tokenizer_ass.pickle', 'rb') as handle:
        tokenizer_ass = pickle.load(handle)

    # Vocab Size
    vocab_size_ass = len(tokenizer_ass.word_index.keys())
    vocab_size_eng = len(tokenizer_eng.word_index.keys())
    
    return train,validation,tokenizer_eng,tokenizer_ass,vocab_size_ass,vocab_size_eng

def main():
    train,validation,tokenizer_eng,tokenizer_ass,vocab_size_ass,vocab_size_eng = load_weights()
    in_input_length = 30
    tar_input_length = 30
    inp_vocab_size = vocab_size_ass
    out_vocab_size = vocab_size_eng

    dec_units = 128
    lstm_size = 128
    att_units = 256
    batch_size = 32
    embedding_dim = 300
    embedding_size = 300

    train_dataset = Dataset(train, tokenizer_ass, tokenizer_eng, in_input_length)
    test_dataset  = Dataset(validation, tokenizer_ass, tokenizer_eng, in_input_length)

    train_dataloader = Dataloder(train_dataset, batch_size)
    test_dataloader = Dataloder(test_dataset, batch_size)


    print(train_dataloader[0][0][0].shape, train_dataloader[0][0][1].shape, train_dataloader[0][1].shape)
    
    model = encoder_decoder(out_vocab_size,inp_vocab_size,embedding_dim,embedding_size,in_input_length,tar_input_length,dec_units,lstm_size,att_units,batch_size)
    optimizer = tf.keras.optimizers.Adam()
    model.compile(optimizer=optimizer,loss=loss_function,metrics=[accuracy])
    
    # train_steps=train.shape[0]//32
    # valid_steps=validation.shape[0]//32
    model.fit(train_dataloader, steps_per_epoch=10, epochs=1,verbose=1, validation_data=train_dataloader, validation_steps=1)
    
    model.load_weights('models/bi_directional_concat_256_batch_160_epoch_30_length_ass_eng_nmt_weights.h5')
    model.fit(train_dataloader, steps_per_epoch=10, epochs=1,verbose=1, validation_data=train_dataloader, validation_steps=1)
    model.summary()
    
    return model,tokenizer_eng,tokenizer_ass,in_input_length
# if __name__=="__main__":
#     main()