import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline from threading import Thread model_id = "rasyosef/Llama-3.2-180M-Amharic-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) llama_am = pipeline( "text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id ) # Function that accepts a prompt and generates text using the phi2 pipeline def generate(message, chat_history, max_new_tokens=64): history = [] for sent, received in chat_history: history.append({"role": "user", "content": sent}) history.append({"role": "assistant", "content": received}) history.append({"role": "user", "content": message}) #print(history) if len(tokenizer.apply_chat_template(history)) > 512: yield "chat history is too long" else: # Streamer streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0) thread = Thread(target=llama_am, kwargs={ "text_inputs":history, "max_new_tokens":max_new_tokens, "repetition_penalty":1.15, "streamer":streamer } ) thread.start() generated_text = "" for word in streamer: generated_text += word response = generated_text.strip() yield response # Chat interface with gradio with gr.Blocks() as demo: gr.Markdown(""" # Llama 3.2 180M Amharic Chatbot Demo This chatbot was created using [Llama-3.2-180M-Amharic-Instruct](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic-Instruct), a finetuned version of my 180 million parameter [Llama 3.2 180M Amharic](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic) transformer model. """) tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.") chatbot = gr.ChatInterface( chatbot=gr.Chatbot(height=400), fn=generate, additional_inputs=[tokens_slider], stop_btn=None, cache_examples=False, examples=[ ["ሰላም፣ እንዴት ነህ?"], ["የኢትዮጵያ ዋና ከተማ ስም ምንድን ነው?"], ["የኢትዮጵያ የመጨረሻው ንጉስ ማን ነበሩ?"], ["የፈረንሳይ ዋና ከተማ ስም ምንድን ነው?"], ["አሁን የአሜሪካ ፕሬዚዳንት ማን ነው?"], ["ሶስት የአፍሪካ ሀገራት ጥቀስልኝ"], ["3 የአሜሪካ መሪዎችን ስም ጥቀስ"], ["5 የአሜሪካ ከተማዎችን ጥቀስ"], ["አምስት የአውሮፓ ሀገሮችን ጥቀስልኝ"], ["የተሰጠው ጽሑፍ አስተያየት ምን አይነት ነው? 'አዎንታዊ'፣ 'አሉታዊ' ወይም 'ገለልተኛ' የሚል ምላሽ ስጥ። 'አሪፍ ፊልም ነበር'"], ["በ ዓለም ላይ ያሉትን 7 አህጉራት ንገረኝ"] ] ) demo.queue().launch(debug=True)