added helper files
Browse files- README.md +5 -6
- helper.py +155 -0
- requirements.txt +11 -0
README.md
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
short_description: 'Try out our frontend with our existing datatsets '
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Quasara Frontend Try
|
3 |
+
emoji: π
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.38.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
helper.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
from open_clip import create_model_from_pretrained, get_tokenizer
|
4 |
+
import torch
|
5 |
+
from datasets import load_dataset
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
import torch.nn as nn
|
8 |
+
import boto3
|
9 |
+
import streamlit as st
|
10 |
+
from PIL import Image
|
11 |
+
from io import BytesIO
|
12 |
+
from typing import List, Union
|
13 |
+
|
14 |
+
|
15 |
+
# Initialize the model globally to avoid reloading each time
|
16 |
+
model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-SO400M-14-SigLIP-384')
|
17 |
+
tokenizer = get_tokenizer('hf-hub:timm/ViT-SO400M-14-SigLIP-384')
|
18 |
+
|
19 |
+
#what model do we use?
|
20 |
+
|
21 |
+
def encode_query(query: Union[str, Image.Image]) -> torch.Tensor:
|
22 |
+
"""
|
23 |
+
Encode the query using the OpenCLIP model.
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
query : Union[str, Image.Image]
|
28 |
+
The query, which can be a text string or an Image object.
|
29 |
+
|
30 |
+
Returns
|
31 |
+
-------
|
32 |
+
torch.Tensor
|
33 |
+
The encoded query vector.
|
34 |
+
"""
|
35 |
+
if isinstance(query, Image.Image):
|
36 |
+
query = preprocess(query).unsqueeze(0) # Preprocess the image and add batch dimension
|
37 |
+
with torch.no_grad():
|
38 |
+
query_embedding = model.encode_image(query) # Get image embedding
|
39 |
+
elif isinstance(query, str):
|
40 |
+
text = tokenizer(query, context_length=model.context_length)
|
41 |
+
with torch.no_grad():
|
42 |
+
query_embedding = model.encode_text(text) # Get text embedding
|
43 |
+
else:
|
44 |
+
raise ValueError("Query must be either a string or an Image.")
|
45 |
+
|
46 |
+
return query_embedding
|
47 |
+
|
48 |
+
def load_hf_datasets(dataset_name):
|
49 |
+
"""
|
50 |
+
Load Datasets from Hugging Face as DF
|
51 |
+
---------------------------------------
|
52 |
+
dataset_name: str - name of dataset on Hugging Face
|
53 |
+
---------------------------------------
|
54 |
+
|
55 |
+
RETURNS: dataset as pandas dataframe
|
56 |
+
"""
|
57 |
+
dataset = load_dataset(f"quasara-io/{dataset_name}")
|
58 |
+
# Access only the 'Main' split
|
59 |
+
main_dataset = dataset['Main']
|
60 |
+
# Convert to Pandas DataFrame
|
61 |
+
df = main_dataset.to_pandas()
|
62 |
+
return df
|
63 |
+
|
64 |
+
def get_image_vectors(df):
|
65 |
+
# Get the image vectors from the dataframe
|
66 |
+
image_vectors = np.vstack(df['Vector'].to_numpy())
|
67 |
+
return torch.tensor(image_vectors, dtype=torch.float32)
|
68 |
+
|
69 |
+
|
70 |
+
def search(query, df, limit, offset, scoring_func, search_in_images, search_in_small_objects):
|
71 |
+
if search_in_images:
|
72 |
+
# Encode the image query
|
73 |
+
query_vector = encode_query(query)
|
74 |
+
|
75 |
+
|
76 |
+
# Get the image vectors from the dataframe
|
77 |
+
image_vectors = get_image_vectors(df)
|
78 |
+
|
79 |
+
|
80 |
+
# Calculate the cosine similarity between the query vector and each image vector
|
81 |
+
query_vector = query_vector[0, :].detach().numpy() # Detach and convert to a NumPy array
|
82 |
+
image_vectors = image_vectors.detach().numpy() # Convert the image vectors to a NumPy array
|
83 |
+
cosine_similarities = cosine_similarity([query_vector], image_vectors)
|
84 |
+
|
85 |
+
# Get the top K indices of the most similar image vectors
|
86 |
+
top_k_indices = np.argsort(-cosine_similarities[0])[:limit]
|
87 |
+
|
88 |
+
# Return the top K indices
|
89 |
+
return top_k_indices
|
90 |
+
|
91 |
+
def get_file_paths(df, top_k_indices, column_name = 'File_Path'):
|
92 |
+
"""
|
93 |
+
Retrieve the file paths (or any specific column) from the DataFrame using the top K indices.
|
94 |
+
|
95 |
+
Parameters:
|
96 |
+
- df: pandas DataFrame containing the data
|
97 |
+
- top_k_indices: numpy array of the top K indices
|
98 |
+
- column_name: str, the name of the column to fetch (e.g., 'ImagePath')
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
- top_k_paths: list of file paths or values from the specified column
|
102 |
+
"""
|
103 |
+
# Fetch the specific column corresponding to the top K indices
|
104 |
+
top_k_paths = df.iloc[top_k_indices][column_name].tolist()
|
105 |
+
return top_k_paths
|
106 |
+
|
107 |
+
|
108 |
+
def get_images_from_s3_to_display(bucket_name, file_paths, AWS_ACCESS_KEY_ID,AWS_SECRET_ACCESS_KEY, folder_name= None):
|
109 |
+
"""
|
110 |
+
Retrieve and display images from AWS S3 in a Streamlit app.
|
111 |
+
|
112 |
+
Parameters:
|
113 |
+
- bucket_name: str, the name of the S3 bucket
|
114 |
+
- file_paths: list, a list of file paths to retrieve from S3
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
- None (directly displays images in the Streamlit app)
|
118 |
+
"""
|
119 |
+
# Initialize S3 client
|
120 |
+
s3 = boto3.client(
|
121 |
+
's3',
|
122 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
123 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
|
124 |
+
)
|
125 |
+
|
126 |
+
# Iterate over file paths and display each image
|
127 |
+
for file_path in file_paths:
|
128 |
+
# Retrieve the image from S3
|
129 |
+
s3_object = s3.get_object(Bucket=bucket_name, Key=f"{folder_name}{file_path}")
|
130 |
+
img_data = s3_object['Body'].read()
|
131 |
+
|
132 |
+
# Open the image using PIL and display it using Streamlit
|
133 |
+
img = Image.open(BytesIO(img_data))
|
134 |
+
st.image(img, caption=file_path, use_column_width=True)
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
def main():
|
139 |
+
dataset_name = "StopSign_test"
|
140 |
+
query = "black car"
|
141 |
+
limit = 10
|
142 |
+
offset = 0
|
143 |
+
scoring_func = "cosine"
|
144 |
+
search_in_images = True
|
145 |
+
search_in_small_objects = False
|
146 |
+
|
147 |
+
df = load_hf_datasets(dataset_name)
|
148 |
+
results = search(query, df, limit, offset, scoring_func, search_in_images, search_in_small_objects)
|
149 |
+
top_k_paths = get_file_paths(df,results)
|
150 |
+
return top_k_paths
|
151 |
+
|
152 |
+
|
153 |
+
if __name__ == "__main__":
|
154 |
+
main()
|
155 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
sentence-transformers
|
3 |
+
open_clip
|
4 |
+
torch
|
5 |
+
datasets
|
6 |
+
scikit-learn
|
7 |
+
torchvision # Typically required with PyTorch for image processing
|
8 |
+
boto3
|
9 |
+
streamlit
|
10 |
+
Pillow
|
11 |
+
python-dotenv # If you are using a .env file for managing secrets
|