prithivMLmods's picture
Update app.py
cee2c12 verified
raw
history blame
6.69 kB
import logging
import os
import subprocess
import sys
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple
from urllib.request import urlopen, urlretrieve
import streamlit as st
from huggingface_hub import HfApi, whoami
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class Config:
"""Application configuration."""
hf_token: str
hf_username: str
transformers_version: str = "3.0.0"
hf_base_url: str = "https://huggingface.co"
transformers_base_url: str = (
"https://github.com/xenova/transformers.js/archive/refs"
)
repo_path: Path = Path("./transformers.js")
@classmethod
def from_env(cls) -> "Config":
"""Create config from environment variables and secrets."""
system_token = st.secrets.get("HF_TOKEN")
user_token = st.session_state.get("user_hf_token")
if user_token:
hf_username = whoami(token=user_token)["name"]
else:
hf_username = (
os.getenv("SPACE_AUTHOR_NAME") or whoami(token=system_token)["name"]
)
hf_token = user_token or system_token
if not hf_token:
raise ValueError("HF_TOKEN must be set")
return cls(hf_token=hf_token, hf_username=hf_username)
class ModelConverter:
"""Handles model conversion and upload operations."""
def __init__(self, config: Config):
self.config = config
self.api = HfApi(token=config.hf_token)
def _get_ref_type(self) -> str:
"""Determine the reference type for the transformers repository."""
url = f"{self.config.transformers_base_url}/tags/{self.config.transformers_version}.tar.gz"
try:
return "tags" if urlopen(url).getcode() == 200 else "heads"
except Exception as e:
logger.warning(f"Failed to check tags, defaulting to heads: {e}")
return "heads"
def setup_repository(self) -> None:
"""Download and setup transformers repository if needed."""
if self.config.repo_path.exists():
return
ref_type = self._get_ref_type()
archive_url = f"{self.config.transformers_base_url}/{ref_type}/{self.config.transformers_version}.tar.gz"
archive_path = Path(f"./transformers_{self.config.transformers_version}.tar.gz")
try:
urlretrieve(archive_url, archive_path)
self._extract_archive(archive_path)
logger.info("Repository downloaded and extracted successfully")
except Exception as e:
raise RuntimeError(f"Failed to setup repository: {e}")
finally:
archive_path.unlink(missing_ok=True)
def _extract_archive(self, archive_path: Path) -> None:
"""Extract the downloaded archive."""
import tarfile
import tempfile
with tempfile.TemporaryDirectory() as tmp_dir:
with tarfile.open(archive_path, "r:gz") as tar:
tar.extractall(tmp_dir)
extracted_folder = next(Path(tmp_dir).iterdir())
extracted_folder.rename(self.config.repo_path)
def convert_model(self, input_model_id: str) -> Tuple[bool, Optional[str]]:
"""Convert the model to ONNX format."""
try:
result = subprocess.run(
[
sys.executable,
"-m",
"scripts.convert",
"--quantize",
"--model_id",
input_model_id,
],
cwd=self.config.repo_path,
capture_output=True,
text=True,
env={},
)
if result.returncode != 0:
return False, result.stderr
return True, result.stderr
except Exception as e:
return False, str(e)
def upload_model(self, input_model_id: str) -> Optional[str]:
"""Upload the converted model to the `onnx/` subfolder in the existing model repository."""
try:
model_folder_path = self.config.repo_path / "models" / input_model_id
onnx_folder_path = model_folder_path / "onnx"
# Create the `onnx` subfolder if it doesn't exist
onnx_folder_path.mkdir(exist_ok=True)
# Move the ONNX files to the `onnx` subfolder
for file in model_folder_path.iterdir():
if file.is_file() and file.suffix == ".onnx":
file.rename(onnx_folder_path / file.name)
# Upload the `onnx` subfolder to the existing repository
self.api.upload_folder(
folder_path=str(onnx_folder_path),
repo_id=input_model_id,
path_in_repo="onnx",
)
return None
except Exception as e:
return str(e)
finally:
import shutil
shutil.rmtree(model_folder_path, ignore_errors=True)
def main():
"""Main application entry point."""
st.write("## Convert a Hugging Face model to ONNX")
try:
config = Config.from_env()
converter = ModelConverter(config)
converter.setup_repository()
input_model_id = st.text_input(
"Enter the Hugging Face model ID to convert. Example: `EleutherAI/pythia-14m`"
)
if not input_model_id:
return
st.text_input(
f"Optional: Your Hugging Face write token. Fill it if you want to upload the model under your account.",
type="password",
key="user_hf_token",
)
output_model_url = f"{config.hf_base_url}/{input_model_id}"
if not st.button(label="Proceed", type="primary"):
return
with st.spinner("Converting model..."):
success, stderr = converter.convert_model(input_model_id)
if not success:
st.error(f"Conversion failed: {stderr}")
return
st.success("Conversion successful!")
st.code(stderr)
with st.spinner("Uploading model..."):
error = converter.upload_model(input_model_id)
if error:
st.error(f"Upload failed: {error}")
return
st.success("Upload successful!")
st.write("You can now go and view the model on Hugging Face!")
st.link_button(f"Go to {input_model_id}", output_model_url, type="primary")
except Exception as e:
logger.exception("Application error")
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main()