Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from collections.abc import Iterator | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from typing import List, Dict, Optional, Tuple | |
DESCRIPTION = """ | |
# QwQ Distill | |
""" | |
css = ''' | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: #fff; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
''' | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.config.sliding_window = 4096 | |
model.eval() | |
# Set the pad token ID if it's not already set | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
# Define roles for the chat | |
class Role: | |
SYSTEM = "system" | |
USER = "user" | |
ASSISTANT = "assistant" | |
# Default system message | |
default_system = "You are a helpful assistant." | |
def clear_session() -> List: | |
return "", [] | |
def modify_system_session(system: str) -> Tuple[str, str, List]: | |
if system is None or len(system) == 0: | |
system = default_system | |
return system, system, [] | |
def history_to_messages(history: List, system: str) -> List[Dict]: | |
messages = [{'role': Role.SYSTEM, 'content': system}] | |
for h in history: | |
messages.append({'role': Role.USER, 'content': h[0]}) | |
messages.append({'role': Role.ASSISTANT, 'content': h[1]}) | |
return messages | |
def messages_to_history(messages: List[Dict]) -> Tuple[str, List]: | |
assert messages[0]['role'] == Role.SYSTEM | |
system = messages[0]['content'] | |
history = [] | |
for q, r in zip(messages[1::2], messages[2::2]): | |
history.append([q['content'], r['content']]) | |
return system, history | |
def generate( | |
query: Optional[str], | |
history: Optional[List], | |
system: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
if query is None: | |
query = '' | |
if history is None: | |
history = [] | |
# Convert history to messages | |
messages = history_to_messages(history, system) | |
messages.append({'role': Role.USER, 'content': query}) | |
# Apply chat template and get input_ids | |
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") | |
# Create attention mask | |
attention_mask = torch.ones_like(input_ids) | |
# Trim input if it exceeds the maximum token length | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
attention_mask = attention_mask.to(model.device) | |
# Set up the streamer for real-time text generation | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Stream the output tokens | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox(label="System Message", value=default_system, lines=2), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["Write a Python function to reverses a string if it's length is a multiple of 4."], | |
["What is the volume of a pyramid with a rectangular base?"], | |
["Explain the difference between List comprehension and Lambda in Python."], | |
["What happens when the sun goes down?"], | |
], | |
cache_examples=False, | |
description=DESCRIPTION, | |
css=css, | |
fill_height=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True) |