Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,594 Bytes
0c1b8f7 0ba4242 0c1b8f7 10cb780 0c1b8f7 0ba4242 0c1b8f7 0ba4242 806d92e 1d74de7 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 47473ae 1d74de7 47473ae 0ba4242 ab6b5e5 0ba4242 f8af0ad 1d74de7 f8af0ad 0ba4242 1d74de7 0ba4242 f8af0ad 0ba4242 1d74de7 0ba4242 f8af0ad 0ba4242 1d74de7 0ba4242 1d74de7 0ba4242 be810f5 f8af0ad 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 47473ae 0c1b8f7 f8af0ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """
# QwQ Distill
"""
css = '''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.config.sliding_window = 4096
model.eval()
# Set the pad token ID if it's not already set
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
@spaces.GPU(duration=120)
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = chat_history.copy()
conversation.append({"role": "user", "content": message})
# Apply chat template and get input_ids
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
# Create attention mask
attention_mask = torch.ones_like(input_ids)
# Trim input if it exceeds the maximum token length
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
attention_mask = attention_mask.to(model.device)
# Set up the streamer for real-time text generation
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
attention_mask=attention_mask,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.pad_token_id,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Stream the output tokens
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Write a Python function to reverses a string if it's length is a multiple of 4. def reverse_string(str1): if len(str1) % 4 == 0: return ''.join(reversed(str1)) return str1 print(reverse_string('abcd')) print(reverse_string('python')) "],
["Rectangle $ABCD$ is the base of pyramid $PABCD$. If $AB = 10$, $BC = 5$, $\overline{PA}\perp \text{plane } ABCD$, and $PA = 8$, then what is the volume of $PABCD$?"],
["Difference between List comprehension and Lambda in Python lst = [x ** 2 for x in range (1, 11) if x % 2 == 1] print(lst)"],
["What happens when the sun goes down?"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) # Set `share=True` for a public link |