File size: 3,875 Bytes
0c1b8f7
0ba4242
 
0c1b8f7
10cb780
0c1b8f7
0ba4242
0c1b8f7
0ba4242
7d0f94b
0ba4242
806d92e
7d0f94b
0ba4242
 
 
 
ab6b5e5
0ba4242
 
 
 
 
ab6b5e5
0ba4242
ab6b5e5
0ba4242
 
 
ab6b5e5
 
 
62697d5
0ba4242
 
 
 
 
 
 
47473ae
c863607
908a038
ab6b5e5
7d0f94b
 
0ba4242
 
 
 
 
7a2c608
7d0f94b
0ba4242
7d0f94b
 
 
 
 
0ba4242
a29c2e7
0ba4242
7d0f94b
0ba4242
 
 
 
 
 
 
 
 
 
 
be810f5
0ba4242
 
 
7a2c608
ab6b5e5
 
0ba4242
 
 
 
 
ab6b5e5
0ba4242
ab6b5e5
0ba4242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab6b5e5
0ba4242
 
 
 
 
 
 
 
 
 
 
 
7d0f94b
 
 
0ba4242
 
 
7d0f94b
0ba4242
 
 
 
47473ae
 
0c1b8f7
7d0f94b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

DESCRIPTION = """
# LlamaEXP 
"""

css ='''
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: #fff;
  background: #1565c0;
  border-radius: 100vh;
}
'''

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "prithivMLmods/QwQ-R1-Distill-1.5B-CoT"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()


@spaces.GPU(duration=60)
def generate(
    message: str,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = [*chat_history, {"role": "user", "content": message}]

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Write a Python function to reverses a string if it's length is a multiple of 4. def reverse_string(str1): if len(str1) % 4 == 0: return ''.join(reversed(str1)) return str1 print(reverse_string('abcd')) print(reverse_string('python')) "],
        ["Rectangle $ABCD$ is the base of pyramid $PABCD$. If $AB = 10$, $BC = 5$, $\overline{PA}\perp \text{plane } ABCD$, and $PA = 8$, then what is the volume of $PABCD$?"],
        ["Difference between List comprehension and Lambda in Python lst  =  [x ** 2  for x in range (1, 11)   if  x % 2 == 1] print(lst)"],
        ["What happens when the sun goes down?"],
    ],
    cache_examples=False,
    type="messages",
    description=DESCRIPTION,
    css=css,
    fill_height=True,
)


if __name__ == "__main__":
    demo.queue(max_size=20).launch()