Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
from PIL import Image | |
import pytesseract | |
import os | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain.chains import LLMChain | |
from langchain_core.prompts import PromptTemplate | |
import re | |
import json | |
api_key = os.environ.get("HFBearer") | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key | |
# API URL and headers | |
API_URL = "https://pllfc7e5i0rujahy.us-east-1.aws.endpoints.huggingface.cloud" | |
# Function to extract text from image | |
def extract_text_from_image(image): | |
text = pytesseract.image_to_string(image) | |
return text | |
# Function to extract JSON from text | |
def extract_json(text): | |
# Use regex to find the JSON between <JSON> and </JSON> | |
match = re.search(r'<JSON>\s*(.*?)\s*</JSON>', text, re.DOTALL) | |
if match: | |
json_str = match.group(1) # Get the JSON string | |
try: | |
# Load the JSON string into a Python dictionary | |
json_data = json.loads(json_str) | |
return json_data | |
except json.JSONDecodeError: | |
return "Erreur de décodage JSON" | |
else: | |
return "Aucun JSON trouvé" | |
# Function to get metadata title from image | |
def get_image_metadata(image): | |
# You can customize this function to extract other metadata as needed | |
title = image.name.split('.')[0] # Simple title extraction from file name without extension | |
return title | |
def count_tokens(text): | |
return len(text.split()) | |
image_params = { | |
"bilan-atherosclerose": "medecin_responsable, rythme_sinusal, valeur_EIM, score_calcique", | |
"bilan-medical": "medecin_responsable, date_naissance, prenom, nom, identifiant_patient, nom_medecin", | |
"ECG": "medecin_responsable, poids, taille, ECG_repos_valeur_par_minute), valeur_FMT, valeur_niveau_atteint, valeur_diminution_frequence_cardiaque_bpm", | |
"echo-doppler": "medecin_responsable, sous_clavieres, vertebrales, carotides", | |
"echographie-poumons": "medecin_responsable, score calcique, technique, resultats", | |
"echotomographie-abdominale": "medecin_responsable, foie, vesicule, pancreas, reins, rate, aorte_abdominale, conclusion", | |
"echotomographie-cardiaque": "medecin_responsable, taille, poids, surface_corporelle, conclusion", | |
"echotomographie-prostate": "medecin_responsable, vessie, ureteres, prostate, conclusion", | |
"hematologie": "medecin_responsable, leucocytes, hematies, hemoglobines, hematocrite" | |
} | |
# Streamlit app layout | |
st.title("API Query App") | |
st.write("This app allows you to query the API and retrieve responses.") | |
user_input = """ | |
Vous allez extraire des paramètres d'un texte à l'intérieur d'un objet JSON, écrit entre <JSON> et </JSON>. | |
Liste des paramètres : {parameters} | |
Voici un exemple de réponse valide : | |
<JSON> | |
{{"date_naissance": "", "prenom": "", "nom": ""}} | |
</JSON> | |
Voici le texte à partir duquel vous devez extraire les paramètres : | |
{texte} | |
""" | |
prompt = PromptTemplate.from_template(user_input) | |
llm = HuggingFaceEndpoint( | |
endpoint_url=API_URL, | |
) | |
llm_chain = prompt | llm | |
# File uploader for multiple images | |
uploaded_images = st.file_uploader("Upload images", type=["png", "jpg", "jpeg"], accept_multiple_files=True) | |
# Modify the Streamlit section to extract the JSON for multiple images | |
if st.button("Submit"): | |
if uploaded_images: | |
all_json_data = {} # Dictionary to store JSON data for each image | |
for uploaded_image in uploaded_images: | |
with st.spinner(f"Extracting text from image: {uploaded_image.name}..."): | |
image = Image.open(uploaded_image) | |
extracted_text = extract_text_from_image(image) | |
max_text_length = 500 # Adjust as needed to keep total tokens under 1024 | |
if count_tokens(extracted_text) > max_text_length: | |
extracted_text = " ".join(extracted_text.split()[:max_text_length]) | |
with st.spinner(f"Fetching response from API for {uploaded_image.name}..."): | |
# Get metadata title from the image | |
title = get_image_metadata(uploaded_image) | |
parameters = image_params[title] | |
output = llm_chain.invoke({"texte": extracted_text, "parameters": parameters}) | |
st.success(f"Response received for {uploaded_image.name}!") | |
# Extract JSON from the API output | |
json_data = extract_json(output) # Extract JSON from the API output | |
all_json_data[title] = json_data # Store JSON data with title as key | |
st.write(title, json_data) | |
# Display all extracted JSON data | |
st.write("Extracted JSON Data for all images.") | |
else: | |
st.warning("Please upload at least one image to extract text.") |