from fastapi import FastAPI, APIRouter from fastapi.staticfiles import StaticFiles from starlette.responses import FileResponse from fastapi.middleware.cors import CORSMiddleware import base64 from pydantic import BaseModel import time from facenet_pytorch import InceptionResnetV1, MTCNN import warnings import face_compare warnings.filterwarnings('ignore', category=FutureWarning, module='facenet_pytorch') mtcnn = MTCNN(keep_all=False, device='cpu') model = InceptionResnetV1(pretrained='vggface2').eval() app = FastAPI() router = APIRouter() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) pdf = 0 class ImageData(BaseModel): image: str class ImagesData(BaseModel): idCard: str profileImage: str @router.get("/") async def index() -> FileResponse: return FileResponse(path="front/dist/index.html", media_type="text/html") @router.get("/verification") async def verif() -> FileResponse: return FileResponse(path="front/dist/index.html", media_type="text/html") @router.post("/uploadpdf") async def upload_pdf(data: ImageData): header, encoded = data.image.split(',', 1) binary_data = base64.b64decode(encoded) # Save the pdf pdf = binary_data return {"message": "Image reçue et sauvegardée"} @router.post("/uploadids") async def upload_ids(data: ImagesData): header, encoded1 = data.idCard.split(',', 1) binary_data1 = base64.b64decode(encoded1) header, encoded2 = data.profileImage.split(',', 1) binary_data2 = base64.b64decode(encoded2) output = face_compare.compare_faces(binary_data1, binary_data2) if output > 0.6: return {"message": "Les images correspondent"} else: return {"message": "Les images ne correspondent pas"} app.include_router(router) app.mount("/", StaticFiles(directory="front/dist", html=True), name="static") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)