Spaces:
Sleeping
Sleeping
Valentin Peron
commited on
Commit
·
7468932
1
Parent(s):
743fc77
feat(face_compare): Add face comparison functionality (NO FHE)
Browse files- __pycache__/face_compare.cpython-310.pyc +0 -0
- face_compare.py +52 -0
- main.py +26 -6
- requirements.txt +1 -1
__pycache__/face_compare.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
face_compare.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from facenet_pytorch import MTCNN, InceptionResnetV1
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
mtcnn = MTCNN(keep_all=False, device='cpu')
|
7 |
+
|
8 |
+
model = InceptionResnetV1(pretrained='vggface2').eval()
|
9 |
+
|
10 |
+
def preprocess_face(base64_img):
|
11 |
+
img = Image.open(base64_img).convert('RGB')
|
12 |
+
|
13 |
+
preprocess = transforms.Compose([
|
14 |
+
transforms.Resize((160, 160)),
|
15 |
+
transforms.ToTensor(),
|
16 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
17 |
+
])
|
18 |
+
|
19 |
+
# Detect face and get the bounding box
|
20 |
+
box, _ = mtcnn.detect(img)
|
21 |
+
|
22 |
+
if box is not None:
|
23 |
+
# Crop the image using the bounding box
|
24 |
+
img_cropped = img.crop(box[0]) # box[0] contains (x1, y1, x2, y2)
|
25 |
+
|
26 |
+
# Apply the rest of preprocessing (resize, tensor, normalize)
|
27 |
+
img_preprocessed = preprocess(img_cropped).unsqueeze(0)
|
28 |
+
return img_preprocessed
|
29 |
+
else:
|
30 |
+
print("No face detected")
|
31 |
+
return None
|
32 |
+
|
33 |
+
def compare_faces(base64_img1, base64_img2):
|
34 |
+
# Load and detect face, then crop the image
|
35 |
+
|
36 |
+
# Preprocess both images
|
37 |
+
img1 = preprocess_face(base64_img1) # Replace with your image path
|
38 |
+
img2 = preprocess_face(base64_img2) # Replace with your image path
|
39 |
+
|
40 |
+
# Check if faces were detected in both images
|
41 |
+
if img1 is not None and img2 is not None:
|
42 |
+
# Get the embeddings from the FaceNet model
|
43 |
+
with torch.no_grad():
|
44 |
+
emb1 = model(img1)
|
45 |
+
emb2 = model(img2)
|
46 |
+
|
47 |
+
# Calculate cosine similarity
|
48 |
+
cosine_similarity = torch.nn.functional.cosine_similarity(emb1, emb2)
|
49 |
+
return cosine_similarity.item()
|
50 |
+
else:
|
51 |
+
print("Face detection failed on one or both images.")
|
52 |
+
return None
|
main.py
CHANGED
@@ -5,6 +5,15 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
5 |
import base64
|
6 |
from pydantic import BaseModel
|
7 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
router = APIRouter()
|
@@ -17,7 +26,7 @@ app.add_middleware(
|
|
17 |
allow_headers=["*"],
|
18 |
)
|
19 |
|
20 |
-
pdf = 0
|
21 |
|
22 |
class ImageData(BaseModel):
|
23 |
image: str
|
@@ -37,16 +46,27 @@ async def verif() -> FileResponse:
|
|
37 |
async def upload_pdf(data: ImageData):
|
38 |
header, encoded = data.image.split(',', 1)
|
39 |
binary_data = base64.b64decode(encoded)
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
return {"message": "Image reçue et sauvegardée"}
|
44 |
|
45 |
@router.post("/uploadids")
|
46 |
async def upload_ids(data: ImagesData):
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
app.include_router(router)
|
51 |
|
52 |
app.mount("/", StaticFiles(directory="front/dist", html=True), name="static")
|
|
|
|
|
|
|
|
|
|
5 |
import base64
|
6 |
from pydantic import BaseModel
|
7 |
import time
|
8 |
+
from facenet_pytorch import InceptionResnetV1, MTCNN
|
9 |
+
import warnings
|
10 |
+
import face_compare
|
11 |
+
|
12 |
+
warnings.filterwarnings('ignore', category=FutureWarning, module='facenet_pytorch')
|
13 |
+
|
14 |
+
mtcnn = MTCNN(keep_all=False, device='cpu')
|
15 |
+
|
16 |
+
model = InceptionResnetV1(pretrained='vggface2').eval()
|
17 |
|
18 |
app = FastAPI()
|
19 |
router = APIRouter()
|
|
|
26 |
allow_headers=["*"],
|
27 |
)
|
28 |
|
29 |
+
pdf = 0
|
30 |
|
31 |
class ImageData(BaseModel):
|
32 |
image: str
|
|
|
46 |
async def upload_pdf(data: ImageData):
|
47 |
header, encoded = data.image.split(',', 1)
|
48 |
binary_data = base64.b64decode(encoded)
|
49 |
+
|
50 |
+
# Save the pdf
|
51 |
+
pdf = binary_data
|
52 |
return {"message": "Image reçue et sauvegardée"}
|
53 |
|
54 |
@router.post("/uploadids")
|
55 |
async def upload_ids(data: ImagesData):
|
56 |
+
header, encoded1 = data.idCard.split(',', 1)
|
57 |
+
binary_data1 = base64.b64decode(encoded1)
|
58 |
+
header, encoded2 = data.profileImage.split(',', 1)
|
59 |
+
binary_data2 = base64.b64decode(encoded2)
|
60 |
+
output = face_compare.compare_faces(binary_data1, binary_data2)
|
61 |
+
if output > 0.6:
|
62 |
+
return {"message": "Les images correspondent"}
|
63 |
+
else:
|
64 |
+
return {"message": "Les images ne correspondent pas"}
|
65 |
|
66 |
app.include_router(router)
|
67 |
|
68 |
app.mount("/", StaticFiles(directory="front/dist", html=True), name="static")
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
import uvicorn
|
72 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
CHANGED
@@ -4,4 +4,4 @@ sentencepiece==0.1.*
|
|
4 |
torch==1.11.*
|
5 |
transformers==4.*
|
6 |
uvicorn[standard]==0.17.*
|
7 |
-
numpy<2.0
|
|
|
4 |
torch==1.11.*
|
5 |
transformers==4.*
|
6 |
uvicorn[standard]==0.17.*
|
7 |
+
numpy<2.0
|