Spaces:
Sleeping
Sleeping
import logging | |
import numpy as np | |
from torch._C import device | |
from tqdm import tqdm | |
import torch | |
from torch import nn | |
from torch import optim | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
from models.base import BaseLearner | |
from utils.inc_net import IncrementalNet | |
from utils.inc_net import CosineIncrementalNet | |
from utils.toolkit import target2onehot, tensor2numpy | |
try: | |
from quadprog import solve_qp | |
except: | |
pass | |
EPSILON = 1e-8 | |
init_epoch = 1 | |
init_lr = 0.1 | |
init_milestones = [40, 60, 80] | |
init_lr_decay = 0.1 | |
init_weight_decay = 0.0005 | |
epochs = 1 | |
lrate = 0.1 | |
milestones = [20, 40, 60] | |
lrate_decay = 0.1 | |
batch_size = 16 | |
weight_decay = 2e-4 | |
num_workers = 4 | |
class GEM(BaseLearner): | |
def __init__(self, args): | |
super().__init__(args) | |
self._network = IncrementalNet(args, False) | |
self.previous_data = None | |
self.previous_label = None | |
def after_task(self): | |
self._old_network = self._network.copy().freeze() | |
self._known_classes = self._total_classes | |
logging.info("Exemplar size: {}".format(self.exemplar_size)) | |
def incremental_train(self, data_manager): | |
self._cur_task += 1 | |
self._total_classes = self._known_classes + data_manager.get_task_size( | |
self._cur_task | |
) | |
self._network.update_fc(self._total_classes) | |
logging.info( | |
"Learning on {}-{}".format(self._known_classes, self._total_classes) | |
) | |
train_dataset = data_manager.get_dataset( | |
np.arange(self._known_classes, self._total_classes), | |
source="train", | |
mode="train", | |
) | |
self.train_loader = DataLoader( | |
train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers | |
) | |
test_dataset = data_manager.get_dataset( | |
np.arange(0, self._total_classes), source="test", mode="test" | |
) | |
self.test_loader = DataLoader( | |
test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers | |
) | |
if self._cur_task > 0: | |
previous_dataset = data_manager.get_dataset( | |
[], source="train", mode="train", appendent=self._get_memory() | |
) | |
self.previous_data = [] | |
self.previous_label = [] | |
for i in previous_dataset: | |
_, data_, label_ = i | |
self.previous_data.append(data_) | |
self.previous_label.append(label_) | |
self.previous_data = torch.stack(self.previous_data) | |
self.previous_label = torch.tensor(self.previous_label) | |
# Procedure | |
if len(self._multiple_gpus) > 1: | |
self._network = nn.DataParallel(self._network, self._multiple_gpus) | |
self._train(self.train_loader, self.test_loader) | |
self.build_rehearsal_memory(data_manager, self.samples_per_class) | |
if len(self._multiple_gpus) > 1: | |
self._network = self._network.module | |
def _train(self, train_loader, test_loader): | |
self._network.to(self._device) | |
if self._old_network is not None: | |
self._old_network.to(self._device) | |
if self._cur_task == 0: | |
optimizer = optim.SGD( | |
self._network.parameters(), | |
momentum=0.9, | |
lr=init_lr, | |
weight_decay=init_weight_decay, | |
) | |
scheduler = optim.lr_scheduler.MultiStepLR( | |
optimizer=optimizer, milestones=init_milestones, gamma=init_lr_decay | |
) | |
self._init_train(train_loader, test_loader, optimizer, scheduler) | |
else: | |
optimizer = optim.SGD( | |
self._network.parameters(), | |
lr=lrate, | |
momentum=0.9, | |
weight_decay=weight_decay, | |
) # 1e-5 | |
scheduler = optim.lr_scheduler.MultiStepLR( | |
optimizer=optimizer, milestones=milestones, gamma=lrate_decay | |
) | |
self._update_representation(train_loader, test_loader, optimizer, scheduler) | |
def _init_train(self, train_loader, test_loader, optimizer, scheduler): | |
prog_bar = tqdm(range(init_epoch)) | |
for _, epoch in enumerate(prog_bar): | |
self._network.train() | |
losses = 0.0 | |
correct, total = 0, 0 | |
for i, (_, inputs, targets) in enumerate(train_loader): | |
inputs, targets = inputs.to(self._device), targets.to(self._device) | |
logits = self._network(inputs)["logits"] | |
loss = F.cross_entropy(logits, targets) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
losses += loss.item() | |
_, preds = torch.max(logits, dim=1) | |
correct += preds.eq(targets.expand_as(preds)).cpu().sum() | |
total += len(targets) | |
scheduler.step() | |
train_acc = np.around(tensor2numpy(correct) * 100 / total, decimals=2) | |
if epoch % 5 == 0: | |
test_acc = self._compute_accuracy(self._network, test_loader) | |
info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}".format( | |
self._cur_task, | |
epoch + 1, | |
init_epoch, | |
losses / len(train_loader), | |
train_acc, | |
test_acc, | |
) | |
else: | |
info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}".format( | |
self._cur_task, | |
epoch + 1, | |
init_epoch, | |
losses / len(train_loader), | |
train_acc, | |
) | |
prog_bar.set_description(info) | |
logging.info(info) | |
def _update_representation(self, train_loader, test_loader, optimizer, scheduler): | |
prog_bar = tqdm(range(epochs)) | |
grad_numels = [] | |
for params in self._network.parameters(): | |
grad_numels.append(params.data.numel()) | |
G = torch.zeros((sum(grad_numels), self._cur_task + 1)).to(self._device) | |
for _, epoch in enumerate(prog_bar): | |
self._network.train() | |
losses = 0.0 | |
correct, total = 0, 0 | |
for i, (_, inputs, targets) in enumerate(train_loader): | |
incremental_step = self._total_classes - self._known_classes | |
for k in range(0, self._cur_task): | |
optimizer.zero_grad() | |
mask = torch.where( | |
(self.previous_label >= k * incremental_step) | |
& (self.previous_label < (k + 1) * incremental_step) | |
)[0] | |
data_ = self.previous_data[mask].to(self._device) | |
label_ = self.previous_label[mask].to(self._device) | |
pred_ = self._network(data_)["logits"] | |
pred_[:, : k * incremental_step].data.fill_(-10e10) | |
pred_[:, (k + 1) * incremental_step :].data.fill_(-10e10) | |
loss_ = F.cross_entropy(pred_, label_) | |
loss_.backward() | |
j = 0 | |
for params in self._network.parameters(): | |
if params is not None: | |
if j == 0: | |
stpt = 0 | |
else: | |
stpt = sum(grad_numels[:j]) | |
endpt = sum(grad_numels[: j + 1]) | |
G[stpt:endpt, k].data.copy_(params.grad.data.view(-1)) | |
j += 1 | |
optimizer.zero_grad() | |
inputs, targets = inputs.to(self._device), targets.to(self._device) | |
logits = self._network(inputs)["logits"] | |
logits[:, : self._known_classes].data.fill_(-10e10) | |
loss_clf = F.cross_entropy(logits, targets) | |
loss = loss_clf | |
optimizer.zero_grad() | |
loss.backward() | |
j = 0 | |
for params in self._network.parameters(): | |
if params is not None: | |
if j == 0: | |
stpt = 0 | |
else: | |
stpt = sum(grad_numels[:j]) | |
endpt = sum(grad_numels[: j + 1]) | |
G[stpt:endpt, self._cur_task].data.copy_( | |
params.grad.data.view(-1) | |
) | |
j += 1 | |
dotprod = torch.mm( | |
G[:, self._cur_task].unsqueeze(0), G[:, : self._cur_task] | |
) | |
if (dotprod < 0).sum() > 0: | |
old_grad = G[:, : self._cur_task].cpu().t().double().numpy() | |
cur_grad = G[:, self._cur_task].cpu().contiguous().double().numpy() | |
C = old_grad @ old_grad.T | |
p = old_grad @ cur_grad | |
A = np.eye(old_grad.shape[0]) | |
b = np.zeros(old_grad.shape[0]) | |
v = solve_qp(C, -p, A, b)[0] | |
new_grad = old_grad.T @ v + cur_grad | |
new_grad = torch.tensor(new_grad).float().to(self._device) | |
new_dotprod = torch.mm( | |
new_grad.unsqueeze(0), G[:, : self._cur_task] | |
) | |
if (new_dotprod < -0.01).sum() > 0: | |
assert 0 | |
j = 0 | |
for params in self._network.parameters(): | |
if params is not None: | |
if j == 0: | |
stpt = 0 | |
else: | |
stpt = sum(grad_numels[:j]) | |
endpt = sum(grad_numels[: j + 1]) | |
params.grad.data.copy_( | |
new_grad[stpt:endpt] | |
.contiguous() | |
.view(params.grad.data.size()) | |
) | |
j += 1 | |
optimizer.step() | |
losses += loss.item() | |
_, preds = torch.max(logits, dim=1) | |
correct += preds.eq(targets.expand_as(preds)).cpu().sum() | |
total += len(targets) | |
scheduler.step() | |
train_acc = np.around(tensor2numpy(correct) * 100 / total, decimals=2) | |
if epoch % 5 == 0: | |
test_acc = self._compute_accuracy(self._network, test_loader) | |
info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}".format( | |
self._cur_task, | |
epoch + 1, | |
epochs, | |
losses / len(train_loader), | |
train_acc, | |
test_acc, | |
) | |
else: | |
info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}".format( | |
self._cur_task, | |
epoch + 1, | |
epochs, | |
losses / len(train_loader), | |
train_acc, | |
) | |
prog_bar.set_description(info) | |
logging.info(info) | |