Spaces:
Sleeping
Sleeping
File size: 7,845 Bytes
cb80c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
'''
Re-implementation of SimpleCIL (https://arxiv.org/abs/2303.07338) without pre-trained weights.
The training process is as follows: train the model with cross-entropy in the first stage and replace the classifier with prototypes for all the classes in the subsequent stages.
Please refer to the original implementation (https://github.com/zhoudw-zdw/RevisitingCIL) if you are using pre-trained weights.
'''
import logging
import numpy as np
import torch
from torch import nn
from torch.serialization import load
from tqdm import tqdm
from torch import optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from utils.inc_net import SimpleCosineIncrementalNet
from models.base import BaseLearner
from utils.toolkit import target2onehot, tensor2numpy
num_workers = 8
batch_size = 32
milestones = [40, 80]
class SimpleCIL(BaseLearner):
def __init__(self, args):
super().__init__(args)
self._network = SimpleCosineIncrementalNet(args, False)
self.min_lr = args['min_lr'] if args['min_lr'] is not None else 1e-8
self.args = args
def load_checkpoint(self, filename):
checkpoint = torch.load(filename)
self._total_classes = len(checkpoint["classes"])
self.class_list = np.array(checkpoint["classes"])
self.label_list = checkpoint["label_list"]
print("Class list: ", self.class_list)
self._network.update_fc(self._total_classes)
self._network.load_checkpoint(checkpoint["network"])
self._network.to(self._device)
def after_task(self):
self._known_classes = self._total_classes
def save_checkpoint(self, filename):
self._network.cpu()
save_dict = {
"classes": self.data_manager.get_class_list(self._cur_task),
"network": {
"convnet": self._network.convnet.state_dict(),
"fc": self._network.fc.state_dict()
},
"label_list": self.data_manager.get_label_list(self._cur_task),
}
torch.save(save_dict, "./{}/{}_{}.pkl".format(filename, self.args['model_name'], self._cur_task))
def replace_fc(self,trainloader, model, args):
model = model.eval()
embedding_list = []
label_list = []
with torch.no_grad():
for i, batch in enumerate(trainloader):
(_,data,label) = batch
data = data.cuda()
label = label.cuda()
embedding = model(data)["features"]
embedding_list.append(embedding.cpu())
label_list.append(label.cpu())
embedding_list = torch.cat(embedding_list, dim=0)
label_list = torch.cat(label_list, dim=0)
class_list = np.unique(self.train_dataset.labels)
proto_list = []
for class_index in class_list:
# print('Replacing...',class_index)
data_index = torch.nonzero(label_list == class_index).squeeze(-1)
embedding = embedding_list[data_index]
proto = embedding.mean(0)
if len(self._multiple_gpus) > 1:
self._network.module.fc.weight.data[class_index] = proto
else:
self._network.fc.weight.data[class_index] = proto
return model
def incremental_train(self, data_manager):
self._cur_task += 1
self._total_classes = self._known_classes + data_manager.get_task_size(self._cur_task)
self._network.update_fc(self._total_classes)
logging.info("Learning on {}-{}".format(self._known_classes, self._total_classes))
self.class_list = np.array(data_manager.get_class_list(self._cur_task))
train_dataset = data_manager.get_dataset(np.arange(self._known_classes, self._total_classes),source="train", mode="train", )
self.train_dataset = train_dataset
self.data_manager = data_manager
self.train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_dataset = data_manager.get_dataset(np.arange(0, self._total_classes), source="test", mode="test" )
self.test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
train_dataset_for_protonet = data_manager.get_dataset(np.arange(self._known_classes, self._total_classes),source="train", mode="test", )
self.train_loader_for_protonet = DataLoader(train_dataset_for_protonet, batch_size=batch_size, shuffle=True, num_workers=num_workers)
if len(self._multiple_gpus) > 1:
print('Multiple GPUs')
self._network = nn.DataParallel(self._network, self._multiple_gpus)
self._train(self.train_loader, self.test_loader, self.train_loader_for_protonet)
if len(self._multiple_gpus) > 1:
self._network = self._network.module
def _train(self, train_loader, test_loader, train_loader_for_protonet):
self._network.to(self._device)
if self._cur_task == 0:
optimizer = optim.SGD(
self._network.parameters(),
momentum=0.9,
lr=self.args["init_lr"],
weight_decay=self.args["init_weight_decay"]
)
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer=optimizer, T_max=self.args['init_epoch'], eta_min=self.min_lr
)
self._init_train(train_loader, test_loader, optimizer, scheduler)
self.replace_fc(train_loader_for_protonet, self._network, None)
def _init_train(self, train_loader, test_loader, optimizer, scheduler):
prog_bar = tqdm(range(self.args["init_epoch"]))
for _, epoch in enumerate(prog_bar):
self._network.train()
losses = 0.0
correct, total = 0, 0
for i, (_, inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(self._device), targets.to(self._device)
logits = self._network(inputs)["logits"]
loss = F.cross_entropy(logits, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses += loss.item()
_, preds = torch.max(logits, dim=1)
correct += preds.eq(targets.expand_as(preds)).cpu().sum()
total += len(targets)
scheduler.step()
train_acc = np.around(tensor2numpy(correct) * 100 / total, decimals=2)
if epoch % 5 == 0:
test_acc = self._compute_accuracy(self._network, test_loader)
info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}".format(
self._cur_task,
epoch + 1,
self.args['init_epoch'],
losses / len(train_loader),
train_acc,
test_acc,
)
else:
info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}".format(
self._cur_task,
epoch + 1,
self.args['init_epoch'],
losses / len(train_loader),
train_acc,
)
elapsed = prog_bar.format_dict["elapsed"]
rate = prog_bar.format_dict["rate"]
remaining = (prog_bar.total - prog_bar.n) / rate if rate and prog_bar.total else 0 # Seconds*
prog_bar.set_description(info)
logging.info("Working on task {}: {:.2f}:{:.2f}".format(
self._cur_task,
elapsed,
remaining))
logging.info(info)
logging.info("Finised on task {}: {:.2f}".format(
self._cur_task, elapsed))
|