pantdipendra's picture
severity_msg
89e8b14 verified
import pickle
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
######################################
# 1) LOAD DATA & MODELS
######################################
# Load your dataset
df = pd.read_csv("X_train_test_combined_dataset_Filtered_dataset.csv")
# Ensure 'YMDESUD5ANYO' exists in your DataFrame
if 'YMDESUD5ANYO' not in df.columns:
raise ValueError("The column 'YMDESUD5ANYO' is missing from the dataset. Please check your CSV file.")
# List of model filenames
model_filenames = [
"YOWRCONC.pkl", "YOSEEDOC.pkl", "YO_MDEA5.pkl", "YOWRLSIN.pkl",
"YODPPROB.pkl", "YOWRPROB.pkl", "YODPR2WK.pkl", "YOWRDEPR.pkl",
"YODPDISC.pkl", "YOLOSEV.pkl", "YOWRDCSN.pkl", "YODSMMDE.pkl",
"YO_MDEA3.pkl", "YODPLSIN.pkl", "YOWRELES.pkl", "YOPB2WK.pkl"
]
model_path = "models/"
######################################
# 2) MODEL PREDICTOR
######################################
class ModelPredictor:
def __init__(self, model_path, model_filenames):
self.model_path = model_path
self.model_filenames = model_filenames
self.models = self.load_models()
# Mapping each label (column) so that
# - "1" = first item in list
# - "2" = second item
self.prediction_map = {
"YOWRCONC": {2: "Did NOT have difficulty concentrating", 1: "Had difficulty concentrating"},
"YOSEEDOC": {2: "Did NOT feel the need to see a doctor", 1: "Felt the need to see a doctor"},
"YO_MDEA5": {2: "No restlessness/lethargy noticed", 1: "Others noticed restlessness/lethargy"},
"YOWRLSIN": {2: "Did NOT feel bored/lose interest", 1: "Felt bored/lost interest"},
"YODPPROB": {2: "No other problems for 2+ weeks", 1: "Had other problems for 2+ weeks"},
"YOWRPROB": {2: "No 'worst time ever' feeling", 1: "Had 'worst time ever' feeling"},
"YODPR2WK": {2: "No depressed feelings for 2+ wks", 1: "Had depressed feelings for 2+ wks"},
"YOWRDEPR": {2: "Did NOT feel sad/depressed daily", 1: "Felt sad/depressed mostly everyday"},
"YODPDISC": {2: "Overall mood not sad/depressed", 1: "Overall mood was sad/depressed"},
"YOLOSEV": {2: "Did NOT lose interest in things", 1: "Lost interest in enjoyable things"},
"YOWRDCSN": {2: "Was able to make decisions", 1: "Was unable to make decisions"},
"YODSMMDE": {2: "No 2+ wks depression symptoms", 1: "Had 2+ wks depression symptoms"},
"YO_MDEA3": {2: "No appetite/weight changes", 1: "Had changes in appetite/weight"},
"YODPLSIN": {2: "Never lost interest/felt bored", 1: "Lost interest/felt bored"},
"YOWRELES": {2: "Did NOT eat less than usual", 1: "Ate less than usual"},
"YOPB2WK": {2: "No uneasy feelings 2+ weeks", 1: "Uneasy feelings 2+ weeks"}
}
def load_models(self):
loaded = []
for fname in self.model_filenames:
try:
with open(self.model_path + fname, "rb") as f:
model = pickle.load(f)
loaded.append(model)
except FileNotFoundError:
raise FileNotFoundError(f"Model file '{fname}' not found in path '{self.model_path}'.")
except Exception as e:
raise Exception(f"Error loading model '{fname}': {e}")
return loaded
def make_predictions(self, user_input: pd.DataFrame):
"""
Return:
- A list of np.array [1/2], one for each model
- A list of np.array [prob_of_2], if predict_proba is available, else np.nan
IMPORTANT: This code assumes your model returns [1, 2].
If your model is returning [0, 1], you'll need a transform or re-train it to return [1, 2].
"""
preds = []
probs = []
for model in self.models:
y_pred = model.predict(user_input) # Suppose this returns [1 or 2].
preds.append(y_pred.flatten())
# If model can do predict_proba, we interpret the "2" class as the second column
if hasattr(model, "predict_proba"):
y_prob_2 = model.predict_proba(user_input)[:, 1]
probs.append(y_prob_2)
else:
probs.append(np.full(len(user_input), np.nan))
return preds, probs
def evaluate_severity(self, count_ones: int) -> str:
"""
Evaluate severity based on how many labels predicted = 1.
The bigger the number of 1’s, the more severe the condition.
"""
if 0 <= count_ones <= 5:
return "Low"
elif 6 <= count_ones <= 10:
return "Moderate"
elif 11 <= count_ones <= 16:
return "Severe"
else:
return "Cannot tell the status"
predictor = ModelPredictor(model_path, model_filenames)
######################################
# 3) FEATURE CATEGORIES + MAPPING
######################################
categories_dict = {
"1. Depression & Substance Use Diagnosis": [
"YMDESUD5ANYO", "YMDELT", "YMDEYR", "YMDERSUD5ANY",
"YMSUD5YANY", "YMIUD5YANY", "YMIMS5YANY", "YMIMI5YANY"
],
"2. Mental Health Treatment & Prof Consultation": [
"YMDEHPO", "YMDETXRX", "YMDEHARX", "YMDEHPRX", "YRXMDEYR",
"YHLTMDE", "YTXMDEYR", "YDOCMDE", "YPSY2MDE", "YPSY1MDE", "YCOUNMDE"
],
"3. Functional & Cognitive Impairment": [
"MDEIMPY", "LVLDIFMEM2"
],
"4. Suicidal Thoughts & Behaviors": [
"YUSUITHK", "YUSUITHKYR", "YUSUIPLNYR", "YUSUIPLN"
]
}
# NOTE: input_mapping below for capturing user choices => numeric codes.
input_mapping = {
'YMDESUD5ANYO': {
"SUD only, no MDE": 1,
"MDE only, no SUD": 2,
"SUD and MDE": 3,
"Neither SUD or MDE": 4
},
'YMDELT': {"Yes": 1, "No": 2},
'YMDEYR': {"Yes": 1, "No": 2},
'YMDERSUD5ANY': {"Yes": 1, "No": 0},
'YMSUD5YANY': {"Yes": 1, "No": 0},
'YMIUD5YANY': {"Yes": 1, "No": 0},
'YMIMS5YANY': {"Yes": 1, "No": 0},
'YMIMI5YANY': {"Yes": 1, "No": 0},
'YMDEHPO': {"Yes": 1, "No": 0},
'YMDETXRX': {"Yes": 1, "No": 0},
'YMDEHARX': {"Yes": 1, "No": 0},
'YMDEHPRX': {"Yes": 1, "No": 0},
'YRXMDEYR': {"Yes": 1, "No": 0},
'YHLTMDE': {"Yes": 1, "No": 0},
'YTXMDEYR': {"Yes": 1, "No": 0},
'YDOCMDE': {"Yes": 1, "No": 0},
'YPSY2MDE': {"Yes": 1, "No": 0},
'YPSY1MDE': {"Yes": 1, "No": 0},
'YCOUNMDE': {"Yes": 1, "No": 0},
'MDEIMPY': {"Yes": 1, "No": 2},
'LVLDIFMEM2': {
"No Difficulty": 1,
"Some difficulty": 2,
"A lot of difficulty or cannot do at all": 3
},
'YUSUITHK': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4},
'YUSUITHKYR': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4},
'YUSUIPLNYR': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4},
'YUSUIPLN': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4}
}
def validate_inputs(*args):
for arg in args:
if arg is None or arg == "":
return False
return True
######################################
# 4) NEAREST NEIGHBORS
######################################
def get_nearest_neighbors_info(user_input_df: pd.DataFrame, k=5):
user_cols = user_input_df.columns
if not all(col in df.columns for col in user_cols):
return "Cannot compute nearest neighbors. Some columns not found in df."
sub_df = df[user_cols].copy()
diffs = sub_df - user_input_df.iloc[0]
dists = (diffs**2).sum(axis=1)**0.5
nn_indices = dists.nsmallest(k).index
neighbors = df.loc[nn_indices]
lines = [
f"**Nearest Neighbors (k={k})**",
f"Distances range: {dists[nn_indices].min():.2f} to {dists[nn_indices].max():.2f}",
""
]
# (Removed user-input numeric->text section per request.)
# Show label columns among neighbors
lines.append("**Label Distribution Among Neighbors**")
label_cols = list(predictor.prediction_map.keys())
for lbl in label_cols:
if lbl not in neighbors.columns:
continue
val_counts = neighbors[lbl].value_counts().to_dict()
parts = []
for val_, count_ in val_counts.items():
# If we only mapped [1,2], we check if val_ in [1,2]
if lbl in predictor.prediction_map and val_ in [1,2]:
label_text = predictor.prediction_map[lbl][val_]
parts.append(f"{count_} had '{label_text}' (value={val_})")
else:
parts.append(f"{count_} had numeric={val_}")
lines.append(f"- {lbl}: " + "; ".join(parts))
lines.append("")
return "\n".join(lines)
######################################
# 5) PREDICT FUNCTION
######################################
def predict(
# Category 1 (8):
YMDESUD5ANYO, YMDELT, YMDEYR, YMDERSUD5ANY,
YMSUD5YANY, YMIUD5YANY, YMIMS5YANY, YMIMI5YANY,
# Category 2 (11):
YMDEHPO, YMDETXRX, YMDEHARX, YMDEHPRX, YRXMDEYR,
YHLTMDE, YTXMDEYR, YDOCMDE, YPSY2MDE, YPSY1MDE, YCOUNMDE,
# Category 3 (2):
MDEIMPY, LVLDIFMEM2,
# Category 4 (4):
YUSUITHK, YUSUITHKYR, YUSUIPLNYR, YUSUIPLN
):
# 1) Validate
if not validate_inputs(
YMDESUD5ANYO, YMDELT, YMDEYR, YMDERSUD5ANY,
YMSUD5YANY, YMIUD5YANY, YMIMS5YANY, YMIMI5YANY,
YMDEHPO, YMDETXRX, YMDEHARX, YMDEHPRX, YRXMDEYR,
YHLTMDE, YTXMDEYR, YDOCMDE, YPSY2MDE, YPSY1MDE, YCOUNMDE,
MDEIMPY, LVLDIFMEM2,
YUSUITHK, YUSUITHKYR, YUSUIPLNYR, YUSUIPLN
):
return (
"Please select all required fields.", # 1) Prediction Results
"Validation Error", # 2) Severity
"No data", # 3) Total Count
"No nearest neighbors info", # 4) NN Summary
None, # 5) Bar chart (Input)
None # 6) Bar chart (Labels)
)
# 2) Convert text -> numeric
try:
user_input_dict = {
'YMDESUD5ANYO': input_mapping['YMDESUD5ANYO'][YMDESUD5ANYO],
'YMDELT': input_mapping['YMDELT'][YMDELT],
'YMDEYR': input_mapping['YMDEYR'][YMDEYR],
'YMDERSUD5ANY': input_mapping['YMDERSUD5ANY'][YMDERSUD5ANY],
'YMSUD5YANY': input_mapping['YMSUD5YANY'][YMSUD5YANY],
'YMIUD5YANY': input_mapping['YMIUD5YANY'][YMIUD5YANY],
'YMIMS5YANY': input_mapping['YMIMS5YANY'][YMIMS5YANY],
'YMIMI5YANY': input_mapping['YMIMI5YANY'][YMIMI5YANY],
'YMDEHPO': input_mapping['YMDEHPO'][YMDEHPO],
'YMDETXRX': input_mapping['YMDETXRX'][YMDETXRX],
'YMDEHARX': input_mapping['YMDEHARX'][YMDEHARX],
'YMDEHPRX': input_mapping['YMDEHPRX'][YMDEHPRX],
'YRXMDEYR': input_mapping['YRXMDEYR'][YRXMDEYR],
'YHLTMDE': input_mapping['YHLTMDE'][YHLTMDE],
'YTXMDEYR': input_mapping['YTXMDEYR'][YTXMDEYR],
'YDOCMDE': input_mapping['YDOCMDE'][YDOCMDE],
'YPSY2MDE': input_mapping['YPSY2MDE'][YPSY2MDE],
'YPSY1MDE': input_mapping['YPSY1MDE'][YPSY1MDE],
'YCOUNMDE': input_mapping['YCOUNMDE'][YCOUNMDE],
'MDEIMPY': input_mapping['MDEIMPY'][MDEIMPY],
'LVLDIFMEM2': input_mapping['LVLDIFMEM2'][LVLDIFMEM2],
'YUSUITHK': input_mapping['YUSUITHK'][YUSUITHK],
'YUSUITHKYR': input_mapping['YUSUITHKYR'][YUSUITHKYR],
'YUSUIPLNYR': input_mapping['YUSUIPLNYR'][YUSUIPLNYR],
'YUSUIPLN': input_mapping['YUSUIPLN'][YUSUIPLN]
}
except KeyError as e:
missing_key = e.args[0]
return (
f"Input mapping missing for key: {missing_key}. Please check your `input_mapping` dictionary.",
"Mapping Error",
"No data",
"No nearest neighbors info",
None,
None
)
user_df = pd.DataFrame(user_input_dict, index=[0])
# 3) Make predictions
try:
preds, probs = predictor.make_predictions(user_df)
except Exception as e:
return (
f"Error during prediction: {e}",
"Prediction Error",
"No data",
"No nearest neighbors info",
None,
None
)
# Flatten predictions into a single array
all_preds = np.concatenate(preds)
# Count how many are "1"
count_ones = np.sum(all_preds == 1)
# Evaluate severity using count_ones
severity_base = predictor.evaluate_severity(count_ones)
# # -------------------------------
# # Sum of predicted probabilities
# # -------------------------------
# # 'probs' is a list of arrays; each array is the prob for class=2 from each model.
# sum_prob_2 = sum(prob[0] for prob in probs if not np.isnan(prob[0]))
# sum_prob_1 = sum((1 - prob[0]) for prob in probs if not np.isnan(prob[0]))
# severity_msg = f"{severity_base} (Sum of Prob (Bad Mental Status)={sum_prob_1:.2f}, Prob (Ok Mental Status)={sum_prob_2:.2f})"
# -------------------------------
# Sum, average, and standard deviation of predicted probabilities
# -------------------------------
# Filter probabilities and exclude NaN values
filtered_probs_2 = [prob[0] for prob in probs if not np.isnan(prob[0])]
filtered_probs_1 = [1 - prob[0] for prob in probs if not np.isnan(prob[0])]
sum_prob_2 = sum(filtered_probs_2)
sum_prob_1 = sum(filtered_probs_1)
avg_prob_2 = np.mean(filtered_probs_2)
avg_prob_1 = np.mean(filtered_probs_1)
std_dev_prob_2 = np.std(filtered_probs_2)
std_dev_prob_1 = np.std(filtered_probs_1)
severity_msg = (
f"{severity_base} "
f"(Avg Prob (Bad Mental Status)={avg_prob_1:.2f} ± {std_dev_prob_1:.2f}, "
f"Avg Prob (Ok Mental Status)={avg_prob_2:.2f} ± {std_dev_prob_2:.2f})"
)
# 4) Summarize predictions (with probabilities)
label_prediction_info = {}
for i, fname in enumerate(model_filenames):
lbl_col = fname.split('.')[0]
pred_val = preds[i][0] # e.g. 1 or 2
prob_val_for_2 = probs[i][0] # probability for class=2
# Probability for class=1 => (1 - prob_val_for_2)
prob_of_pred_class = prob_val_for_2 if (pred_val == 2) else (1 - prob_val_for_2)
label_prediction_info[lbl_col] = (pred_val, prob_val_for_2)
# Group them by domain
domain_groups = {
"Concentration and Decision Making": ["YOWRCONC", "YOWRDCSN"],
"Sleep and Energy Levels": ["YO_MDEA5", "YOSEEDOC"],
"Mood and Emotional State": [
"YOWRLSIN", "YOWRDEPR", "YODPDISC", "YOLOSEV", "YODPLSIN"
],
"Appetite and Weight Changes": ["YO_MDEA3", "YOWRELES"],
"Duration and Severity of Depression Symptoms": [
"YODPPROB", "YOWRPROB", "YODPR2WK", "YODSMMDE", "YOPB2WK"
]
}
final_str_parts = []
for gname, lbls in domain_groups.items():
group_lines = []
for lbl in lbls:
if lbl not in label_prediction_info:
continue
pred_val, prob_val_for_2 = label_prediction_info[lbl]
# Probability for the predicted class
if np.isnan(prob_val_for_2):
text_prob = "(No probability available)"
else:
if pred_val == 2:
# Probability of class=2
text_prob = f"(Prob= {prob_val_for_2:.2f} for predicted class = Ok Mental Status)"
else:
# Probability of class=1
prob_of_1 = 1 - prob_val_for_2
text_prob = f"(Prob= {prob_of_1:.2f} for predicted class = Bad Mental Status)"
# If pred_val is 1 or 2, we have a mapping
if lbl in predictor.prediction_map and pred_val in [1, 2]:
text_pred = predictor.prediction_map[lbl][pred_val]
else:
text_pred = f"Prediction={pred_val}"
# Add an emoji indicator
if pred_val == 2:
icon = "✅" # green check
else:
icon = "❌" # red cross
group_lines.append(f"{lbl} => {icon} {text_pred} {text_prob}")
if group_lines:
final_str_parts.append(f"**{gname}**")
final_str_parts.append("\n".join(group_lines))
final_str_parts.append("") # spacing
if final_str_parts:
final_str = "\n".join(final_str_parts)
else:
final_str = "No predictions made or no matching group columns."
# 5) Additional info
##########total_count_md = f"We have **{len(df)}** patients in the dataset."########
total_count_md = f""
# 6) Nearest Neighbors
nn_md = get_nearest_neighbors_info(user_df, k=5)
# 7) Bar chart for input features
input_counts = {}
for col, val_ in user_input_dict.items():
matched = len(df[df[col] == val_])
input_counts[col] = matched
bar_in_df = pd.DataFrame({
"Feature": list(input_counts.keys()),
"Count": list(input_counts.values())
})
fig_in = px.bar(
bar_in_df, x="Feature", y="Count",
title="Number of Patients with the Same Input Feature Values"
)
fig_in.update_layout(width=1200, height=400)
# 8) Bar chart for predicted labels
label_counts = {}
for lbl_col, (pred_val, _) in label_prediction_info.items():
if lbl_col in df.columns:
label_counts[lbl_col] = len(df[df[lbl_col] == pred_val])
if label_counts:
bar_lbl_df = pd.DataFrame({
"Label": list(label_counts.keys()),
"Count": list(label_counts.values()),
"Pred_Val": [label_prediction_info[lbl_col][0] for lbl_col in label_counts.keys()]
})
# Assign legend text & color based on predicted value
# - 2 => "Ok Mental Status" (green)
# - 1 => "Bad Mental Status" (red)
bar_lbl_df["Mental Status"] = bar_lbl_df["Pred_Val"].apply(
lambda x: "Ok Mental Status" if x == 2 else "Bad Mental Status"
)
fig_lbl = px.bar(
bar_lbl_df,
x="Label",
y="Count",
color="Mental Status",
color_discrete_map={
"Ok Mental Status": "green",
"Bad Mental Status": "red"
},
title="Number of Patients with the Same Predicted Label"
)
fig_lbl.update_layout(width=1200, height=400)
else:
fig_lbl = px.bar(title="No valid predicted labels to display.")
fig_lbl.update_layout(width=1200, height=400)
return (
final_str, # 1) Prediction Results
severity_msg, # 2) Mental Health Severity
total_count_md, # 3) Total Patient Count
nn_md, # 4) Nearest Neighbors Summary
fig_in, # 5) Bar Chart (input features)
fig_lbl # 6) Bar Chart (labels)
)
######################################
# 6) UNIFIED DISTRIBUTION/CO-OCCURRENCE
######################################
def combined_plot(feature_list, label_col):
"""
If user picks 1 feature => distribution plot.
If user picks 2 features => co-occurrence plot.
Otherwise => show error or empty plot.
This function also maps numeric codes to text using 'input_mapping'
and 'predictor.prediction_map' so that the plots display more readable labels.
"""
if not label_col:
return px.bar(title="Please select a label column.")
df_copy = df.copy()
# Convert numeric codes -> text for features
for col, text_to_num_dict in input_mapping.items():
if col in df_copy.columns:
num_to_text = {v: k for k, v in text_to_num_dict.items()}
df_copy[col] = df_copy[col].map(num_to_text).fillna(df_copy[col])
# Convert label 1/2 -> text if label_col is in predictor.prediction_map
if label_col in predictor.prediction_map and label_col in df_copy.columns:
map_12 = predictor.prediction_map[label_col]
df_copy[label_col] = df_copy[label_col].map(map_12).fillna(df_copy[label_col])
if len(feature_list) == 1:
f_ = feature_list[0]
if f_ not in df_copy.columns or label_col not in df_copy.columns:
return px.bar(title="Selected columns not found in dataset.")
grouped = df_copy.groupby([f_, label_col]).size().reset_index(name="count")
fig = px.bar(
grouped,
x=f_,
y="count",
color=label_col,
title=f"Distribution of {f_} vs {label_col} (Mapped)"
)
fig.update_layout(width=1200, height=600)
return fig
elif len(feature_list) == 2:
f1, f2 = feature_list
if (f1 not in df_copy.columns) or (f2 not in df_copy.columns) or (label_col not in df_copy.columns):
return px.bar(title="Selected columns not found in dataset.")
grouped = df_copy.groupby([f1, f2, label_col]).size().reset_index(name="count")
fig = px.bar(
grouped,
x=f1,
y="count",
color=label_col,
facet_col=f2,
title=f"Co-occurrence: {f1}, {f2} vs {label_col} (Mapped)"
)
fig.update_layout(width=1200, height=600)
return fig
else:
return px.bar(title="Please select exactly 1 or 2 features.")
######################################
# 7) BUILD GRADIO UI
######################################
with gr.Blocks(css=".gradio-container {max-width: 1200px;}") as demo:
# DISCLAIMER
gr.Markdown(
"#### **Disclaimer**: This is a prototype aiming to apply data-driven AI for mental assessment. "
"It is advised to seek consultation and assessment from a real clinician whenever needed."
)
# ======== TAB 1: Prediction ========
with gr.Tab("Prediction"):
gr.Markdown("### Please provide inputs in each category below. All fields are required.")
# Category 1: Depression & Substance Use Diagnosis (8 features)
gr.Markdown("#### 1. Depression & Substance Use Diagnosis")
cat1_col_labels = [
("YMDESUD5ANYO", "YMDESUD5ANYO: ONLY MDE, ONLY SUD, BOTH, OR NEITHER"),
("YMDELT", "YMDELT: Had major depressive episode in lifetime"),
("YMDEYR", "YMDEYR: Past-year major depressive episode"),
("YMDERSUD5ANY", "YMDERSUD5ANY: MDE or SUD in past year?"),
("YMSUD5YANY", "YMSUD5YANY: Past-year MDE & substance use disorder"),
("YMIUD5YANY", "YMIUD5YANY: Past-year MDE & illicit drug use disorder"),
("YMIMS5YANY", "YMIMS5YANY: Past-year MDE + severe impairment + substance use"),
("YMIMI5YANY", "YMIMI5YANY: Past-year MDE w/ severe impairment & illicit drug use")
]
cat1_inputs = []
for col, label_text in cat1_col_labels:
cat1_inputs.append(
gr.Dropdown(
choices=list(input_mapping[col].keys()),
label=label_text
)
)
# Category 2: Mental Health Treatment & Professional Consultation (11 features)
gr.Markdown("#### 2. Mental Health Treatment & Professional Consultation")
cat2_col_labels = [
("YMDEHPO", "YMDEHPO: Saw health prof only for MDE"),
("YMDETXRX", "YMDETXRX: Received treatment/counseling if saw doc/prof for MDE"),
("YMDEHARX", "YMDEHARX: Saw health prof & medication for MDE"),
("YMDEHPRX", "YMDEHPRX: Saw health prof or med for MDE in past year?"),
("YRXMDEYR", "YRXMDEYR: Used medication for MDE in past years"),
("YHLTMDE", "YHLTMDE: Saw/talked to health prof about MDE"),
("YTXMDEYR", "YTXMDEYR: Saw/talked to doc/prof for MDE in past year"),
("YDOCMDE", "YDOCMDE: Saw/talked to general practitioner/family MD"),
("YPSY2MDE", "YPSY2MDE: Saw/talked to psychiatrist"),
("YPSY1MDE", "YPSY1MDE: Saw/talked to psychologist"),
("YCOUNMDE", "YCOUNMDE: Saw/talked to counselor")
]
cat2_inputs = []
for col, label_text in cat2_col_labels:
cat2_inputs.append(
gr.Dropdown(
choices=list(input_mapping[col].keys()),
label=label_text
)
)
# Category 3: Functional & Cognitive Impairment (2 features)
gr.Markdown("#### 3. Functional & Cognitive Impairment")
cat3_col_labels = [
("MDEIMPY", "MDEIMPY: MDE with severe role impairment?"),
("LVLDIFMEM2", "LVLDIFMEM2: Difficulty remembering/concentrating")
]
cat3_inputs = []
for col, label_text in cat3_col_labels:
cat3_inputs.append(
gr.Dropdown(
choices=list(input_mapping[col].keys()),
label=label_text
)
)
# Category 4: Suicidal Thoughts & Behaviors (4 features)
gr.Markdown("#### 4. Suicidal Thoughts & Behaviors")
cat4_col_labels = [
("YUSUITHK", "YUSUITHK: Thought of killing self (past 12 months)?"),
("YUSUITHKYR", "YUSUITHKYR: Seriously thought about killing self?"),
("YUSUIPLNYR", "YUSUIPLNYR: Made plans to kill self in past years?"),
("YUSUIPLN", "YUSUIPLN: Made plans to kill yourself in past 12 months?")
]
cat4_inputs = []
for col, label_text in cat4_col_labels:
cat4_inputs.append(
gr.Dropdown(
choices=list(input_mapping[col].keys()),
label=label_text
)
)
# Combine all
all_inputs = cat1_inputs + cat2_inputs + cat3_inputs + cat4_inputs
# Outputs
predict_btn = gr.Button("Predict")
out_pred_res = gr.Textbox(label="Prediction Results (with Probability)", lines=8)
out_sev = gr.Textbox(label="Suggested Mental Health Severity", lines=2)
out_count = gr.Markdown(label="Total Patient Count")
out_nn = gr.Markdown(label="Nearest Neighbors Summary")
out_bar_input = gr.Plot(label="Input Feature Counts")
out_bar_label = gr.Plot(label="Predicted Label Counts")
# Connect predict button
predict_btn.click(
fn=predict,
inputs=all_inputs,
outputs=[
out_pred_res,
out_sev,
out_count,
out_nn,
out_bar_input,
out_bar_label
]
)
# ======== TAB 2: Unified Distribution/Co-occurrence ========
with gr.Tab("Distribution/Co-occurrence"):
gr.Markdown("### Select 1 or 2 features + 1 label to see a bar chart.")
list_of_features = sorted(input_mapping.keys())
list_of_labels = sorted(predictor.prediction_map.keys())
selected_features = gr.CheckboxGroup(
choices=list_of_features,
label="Select 1 or 2 features"
)
label_dd = gr.Dropdown(
choices=list_of_labels,
label="Label Column (e.g. YOWRCONC, YOSEEDOC, etc.)"
)
generate_combined_btn = gr.Button("Generate Plot")
combined_output = gr.Plot()
generate_combined_btn.click(
fn=combined_plot,
inputs=[selected_features, label_dd],
outputs=combined_output
)
# Define the glossary content
feature_label_table_glossary_content = """
## Glossary for the Input Features and Target Labels
The compiled glossary for each of the identified input features and output features is listed in Table 1 and Table 2 below.
**Table 1: Target Labels**
| S.N | Target Label | Description |
|----|-------------|-------------|
| 1 | YOWRCONC | On most days, did you have a lot more trouble than usual keeping your mind on things? |
| 2 | YOSEEDOC | At any time in the past 12 months, did you see or talk to a medical doctor or other professional about your feelings? |
| 3 | YO_MDEA5 | Others Noticed That the Respondent Was Restless or Lethargic |
| 4 | YOWRLSIN | During that worst period of time, did you become bored with almost everything like school, work, hobbies, and things you like to do for fun? |
| 5 | YODPPROB | Did you ever have any of the problems (sleep, eating, energy, etc.) for two weeks or longer? |
| 6 | YOWRPROB | Can you think of the worst time when you felt for two weeks or longer and also had these other problems? |
| 7 | YODPR2WK | Did you ever have a period of time that lasted most of the day, almost every day, for two weeks or longer? |
| 8 | YOWRDEPR | During that time, did you feel sad, empty, or depressed for most of the day nearly every day? |
| 9 | YODPDISC | Did you ever feel discouraged about how things were going in your life? |
| 10 | YOLOSEV | Have you ever had a period when you lost interest and became bored with most things? |
| 11 | YOWRDCSN | Were you unable to make up your mind about things? |
| 12 | YODSMMDE | Score of Symptom Indicators 1 Through 9 |
| 13 | YO_MDEA3 | Changes in Appetite or Weight |
| 14 | YODPLSIN | Did you ever lose interest and become really bored with most things? |
| 15 | YOWRELES | Did you eat much less than usual almost every day during that time? |
| 16 | YOPB2WK | In the past 12 months, did you have a period of time when you felt for two weeks or longer? |
**Table 1: Input Features**
| S.N | Input Feature | Description |
|----|---------------|-------------|
| 1 | YMDEYR | Youth: Past Year Major Depressive Episode (MDE) |
| 2 | YMDERSUD5ANY | Youth: Major Depressive Episode or Substance Use Disorder - Past Year - DSM-5 - Any |
| 3 | YMIMS5YANY | Youth: Past Year Major Depressive Episode with Severe Impairment and Substance Use Disorder - DSM-5 - Any |
| 4 | YMDELT | Youth: Lifetime Major Depressive Episode (MDE) |
| 5 | YMDEHARX | Youth: Saw Health Professional and Prescribed Medication for Major Depressive Episode in Past Year |
| 6 | YMDEHPRX | Youth: Saw Health Professional or Prescribed Medication for Major Depressive Episode in Past Year |
| 7 | YMDETXRX | Youth: Received Treatment/Counseling or Prescribed Medication for Major Depressive Episode in Past Year |
| 8 | YMDEHPO | Youth: Saw Health Professional Only for Major Depressive Episode in Past Year |
| 9 | YMIMI5YANY | Youth: Past Year Major Depressive Episode with Severe Impairment and Illicit Drug Use Disorder - DSM-5 - Any |
| 10 | YMIUD5YANY | Youth: Past Year Major Depressive Episode and Illicit Drug Use Disorder - DSM-5 - Any |
| 11 | YMDESUD5ANYO | Youth: Only Major Depressive Episode, Only Substance Use Disorder, Both, or Neither - Past Year - DSM-5 - Any |
| 12 | YCOUNMDE | Youth: Saw/Talked to Counselor About Major Depressive Episode in Past Year |
| 13 | YPSY1MDE | Youth: Saw/Talked to Psychologist About Major Depressive Episode in Past Year |
| 14 | YPSY2MDE | Youth: Saw/Talked to Psychiatrist About Major Depressive Episode in Past Year |
| 15 | YHLTMDE | Youth: Saw/Talked to Health Professional About Major Depressive Episode in Past Year |
| 16 | YDOCMDE | Youth: Saw/Talked to General Practitioner/Family Doctor About Major Depressive Episode in Past Year |
| 17 | YTXMDEYR | Youth: Saw or Talked to Doctor/Professional for Major Depressive Episode in Past Year |
| 18 | YUSUITHKYR | Youth: Seriously Thought About Killing Self in Past Year |
| 19 | YUSUIPLNYR | Youth: Made Plans to Kill Self in Past Year |
| 20 | YUSUITHK | Youth: Seriously Thought About Killing Self in Past 12 Months |
| 21 | YUSUIPLN | Youth: Made Plans to Kill Yourself in Past 12 Months |
| 22 | MDEIMPY | Youth: Major Depressive Episode with Severe Role Impairment |
| 23 | LVLDIFMEM2 | Level of Difficulty Remembering or Concentrating |
| 24 | YMSUD5YANY | Youth: Past Year Major Depressive Episode and Substance Use Disorder - DSM-5 - Any |
| 25 | YRXMDEYR | Youth: Used Prescription Medication for Major Depressive Episode in Past Year |
More information can be found at:
- [NSDUH 2021 Codebook](https://www.datafiles.samhsa.gov/sites/default/files/field-uploads-protected/studies/NSDUH-2021/NSDUH-2021-datasets/NSDUH-2021-DS0001/NSDUH-2021-DS0001-info/NSDUH-2021-DS0001-info-codebook.pdf)
- [NSDUH 2022 Codebook](https://www.datafiles.samhsa.gov/sites/default/files/field-uploads-protected/studies/NSDUH-2022/NSDUH-2022-datasets/NSDUH-2022-DS0001/NSDUH-2022-DS0001-info/NSDUH-2022-DS0001-info-codebook.pdf)
"""
def glossary_display():
return feature_label_table_glossary_content
with gr.Tab("Feature and label description"):
gr.Markdown(feature_label_table_glossary_content)
with gr.Tab("Summary Statistics"):
gr.Markdown("![Summary Statistics Table](https://huggingface.co/spaces/pantdipendra/AdolescentsMentalHealthPrediction/resolve/main/Table111.jpg)")
# Launch the Gradio app
demo.launch()