File size: 29,413 Bytes
25a63b5 b782f65 f9a8132 f9f7e1c f9a8132 67c356a f9a8132 67c356a 230ba50 f9f7e1c 42d91b3 f9a8132 b782f65 f9a8132 230ba50 f9a8132 f9f7e1c b782f65 f9f7e1c f9a8132 f9f7e1c b782f65 f9a8132 c03f9d4 f9a8132 c03f9d4 f9a8132 c03f9d4 f9a8132 67c356a 174d138 8b56cbc f9a8132 67c356a c38370d 6c60301 b782f65 6c60301 437bcb0 67c356a f9f7e1c b782f65 67c356a b782f65 67c356a c38370d f9f7e1c 67c356a c38370d b782f65 67c356a c38370d b782f65 67c356a c38370d b782f65 67c356a c38370d 67c356a 46e9809 f9f7e1c 46e9809 f9f7e1c 46e9809 b782f65 67c356a 6c60301 67c356a 6c60301 b782f65 f9f7e1c 6c60301 67c356a 6c60301 b782f65 f9f7e1c 46e9809 f9f7e1c 46e9809 b782f65 67c356a b782f65 46e9809 67c356a 46e9809 f9f7e1c 46e9809 f9f7e1c b782f65 67c356a b782f65 67c356a f9f7e1c b782f65 33c8e0b b782f65 67c356a f9f7e1c 67c356a f9f7e1c 67c356a f9f7e1c 67c356a b782f65 67c356a b782f65 67c356a b782f65 67c356a b782f65 67c356a b782f65 67c356a b782f65 67c356a b782f65 67c356a b782f65 67c356a 33c8e0b 67c356a b782f65 67c356a b782f65 f9f7e1c 67c356a f9f7e1c 33c8e0b b782f65 33c8e0b b782f65 67c356a b782f65 67c356a 33c8e0b c38370d f9f7e1c 6c60301 c38370d f9f7e1c 6c60301 437bcb0 67c356a f9f7e1c 6ddc90b 17cf712 d3705d1 17cf712 d3705d1 17cf712 d3705d1 17cf712 d3705d1 6ddc90b f9f7e1c 67c356a f9f7e1c 67c356a f9f7e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
import pickle
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
# Load the training CSV once (outside the functions so it is read only once).
df = pd.read_csv("X_train_Y_Train_merged_train.csv")
###############################################################################
# 1) Model Predictor class
###############################################################################
class ModelPredictor:
def __init__(self, model_path, model_filenames):
self.model_path = model_path
self.model_filenames = model_filenames
self.models = self.load_models()
# For each model name, define the mapping from 0->..., 1->...
# If you have more labels, expand this dictionary accordingly.
self.prediction_map = {
"YOWRCONC": ["Did not have difficulty concentrating", "Had difficulty concentrating"],
"YOSEEDOC": ["Did not feel the need to see a doctor", "Felt the need to see a doctor"],
"YOWRHRS": ["Did not have trouble sleeping", "Had trouble sleeping"],
"YO_MDEA5": ["Others did not notice restlessness/lethargy", "Others noticed restlessness/lethargy"],
"YOWRCHR": ["Did not feel so sad that nothing could cheer up", "Felt so sad that nothing could cheer up"],
"YOWRLSIN": ["Did not feel bored and lose interest in all enjoyable things",
"Felt bored and lost interest in all enjoyable things"],
"YODPPROB": ["Did not have other problems for 2+ weeks", "Had other problems for 2+ weeks"],
"YOWRPROB": ["Did not have the worst time ever feeling", "Had the worst time ever feeling"],
"YODPR2WK": ["Did not have periods where feelings lasted 2+ weeks",
"Had periods where feelings lasted 2+ weeks"],
"YOWRDEPR": ["Did not feel sad/depressed mostly everyday", "Felt sad/depressed mostly everyday"],
"YODPDISC": ["Overall mood duration was not sad/depressed",
"Overall mood duration was sad/depressed (discrepancy)"],
"YOLOSEV": ["Did not lose interest in enjoyable things and activities",
"Lost interest in enjoyable things and activities"],
"YOWRDCSN": ["Was able to make decisions", "Was unable to make decisions"],
"YODSMMDE": ["Never had depression symptoms lasting 2 weeks or longer",
"Had depression symptoms lasting 2 weeks or longer"],
"YO_MDEA3": ["Did not experience changes in appetite or weight",
"Experienced changes in appetite or weight"],
"YODPLSIN": ["Never lost interest and felt bored", "Lost interest and felt bored"],
"YOWRELES": ["Did not eat less than usual", "Ate less than usual"],
"YODSCEV": ["Had fewer severe symptoms of depression", "Had more severe symptoms of depression"],
"YOPB2WK": ["Did not experience uneasy feelings lasting every day for 2+ weeks or longer",
"Experienced uneasy feelings lasting every day for 2+ weeks or longer"],
"YO_MDEA2": ["Did not have issues with physical and mental well-being every day for 2 weeks or longer",
"Had issues with physical and mental well-being every day for 2 weeks or longer"]
}
def load_models(self):
models = []
for filename in self.model_filenames:
filepath = self.model_path + filename
with open(filepath, 'rb') as file:
model = pickle.load(file)
models.append(model)
return models
def make_predictions(self, user_input):
"""
Returns a list of numpy arrays, each array is [0] or [1].
The i-th array corresponds to the i-th model in self.models.
"""
predictions = []
for model in self.models:
pred = model.predict(user_input)
pred = np.array(pred).flatten()
predictions.append(pred)
return predictions
def get_majority_vote(self, predictions):
"""
Flatten all predictions from all models, combine them into a single array,
then find the majority class (0 or 1) across all of them.
"""
combined_predictions = np.concatenate(predictions)
majority_vote = np.bincount(combined_predictions).argmax()
return majority_vote
# Based on Equal Interval and Percentage-Based Method
# Severe: 13 to 16 votes (upper 25%)
# Moderate: 9 to 12 votes (upper-middle 25%)
# Low: 5 to 8 votes (lower-middle 25%)
# Very Low: 0 to 4 votes (lower 25%)
def evaluate_severity(self, majority_vote_count):
if majority_vote_count >= 13:
return "Mental health severity: Severe"
elif majority_vote_count >= 9:
return "Mental health severity: Moderate"
elif majority_vote_count >= 5:
return "Mental health severity: Low"
else:
return "Mental health severity: Very Low"
###############################################################################
# 2) Model Filenames & Predictor
###############################################################################
model_filenames = [
"YOWRCONC.pkl", "YOSEEDOC.pkl", "YO_MDEA5.pkl", "YOWRLSIN.pkl",
"YODPPROB.pkl", "YOWRPROB.pkl", "YODPR2WK.pkl", "YOWRDEPR.pkl",
"YODPDISC.pkl", "YOLOSEV.pkl", "YOWRDCSN.pkl", "YODSMMDE.pkl",
"YO_MDEA3.pkl", "YODPLSIN.pkl", "YOWRELES.pkl", "YOPB2WK.pkl"
]
model_path = "models/"
predictor = ModelPredictor(model_path, model_filenames)
###############################################################################
# 3) Validate Inputs
###############################################################################
def validate_inputs(*args):
for arg in args:
if arg == '' or arg is None: # Assuming empty string or None as unselected
return False
return True
###############################################################################
# 4) Reverse Lookup (numeric -> user-friendly text) for input columns
###############################################################################
# We'll define the forward mapping here. The reverse mapping is constructed below.
input_mapping = {
'YNURSMDE': {"Yes": 1, "No": 0},
'YMDEYR': {"Yes": 1, "No": 2},
'YSOCMDE': {"Yes": 1, "No": 0},
'YMDESUD5ANYO': {"SUD only, no MDE": 1, "MDE only, no SUD": 2, "SUD and MDE": 3, "Neither SUD or MDE": 4},
'YMSUD5YANY': {"Yes": 1, "No": 0},
'YUSUITHK': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4},
'YMDETXRX': {"Yes": 1, "No": 0},
'YUSUITHKYR': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4},
'YMDERSUD5ANY': {"Yes": 1, "No": 0},
'YUSUIPLNYR': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4},
'YCOUNMDE': {"Yes": 1, "No": 0},
'YPSY1MDE': {"Yes": 1, "No": 0},
'YHLTMDE': {"Yes": 1, "No": 0},
'YDOCMDE': {"Yes": 1, "No": 0},
'YPSY2MDE': {"Yes": 1, "No": 0},
'YMDEHARX': {"Yes": 1, "No": 0},
'LVLDIFMEM2': {"No Difficulty": 1, "Some difficulty": 2, "A lot of difficulty or cannot do at all": 3},
'MDEIMPY': {"Yes": 1, "No": 2},
'YMDEHPO': {"Yes": 1, "No": 0},
'YMIMS5YANY': {"Yes": 1, "No": 0},
'YMDEIMAD5YR': {"Yes": 1, "No": 0},
'YMIUD5YANY': {"Yes": 1, "No": 0},
'YMDEHPRX': {"Yes": 1, "No": 0},
'YMIMI5YANY': {"Yes": 1, "No": 0},
'YUSUIPLN': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4},
'YTXMDEYR': {"Yes": 1, "No": 0},
'YMDEAUD5YR': {"Yes": 1, "No": 0},
'YRXMDEYR': {"Yes": 1, "No": 0},
'YMDELT': {"Yes": 1, "No": 2}
}
# Build reverse mapping: { "YNURSMDE": {1: "Yes", 0: "No"}, ... } etc.
reverse_mapping = {}
for col, mapping_dict in input_mapping.items():
rev = {v: k for k, v in mapping_dict.items()} # invert dict
reverse_mapping[col] = rev
###############################################################################
# 5) Main Predict Function
###############################################################################
def predict(
YMDEYR, YMDERSUD5ANY, YMDEIMAD5YR, YMIMS5YANY, YMDELT, YMDEHARX,
YMDEHPRX, YMDETXRX, YMDEHPO, YMDEAUD5YR, YMIMI5YANY, YMIUD5YANY,
YMDESUD5ANYO, YNURSMDE, YSOCMDE, YCOUNMDE, YPSY1MDE, YPSY2MDE,
YHLTMDE, YDOCMDE, YTXMDEYR, YUSUITHKYR, YUSUIPLNYR, YUSUITHK,
YUSUIPLN, MDEIMPY, LVLDIFMEM2, YMSUD5YANY, YRXMDEYR
):
"""
Core prediction function that:
1) Predicts with each model
2) Aggregates results
3) Produces an overall 'severity'
4) Returns detailed per-model predictions
5) Creates a distribution plot for ALL input features vs. a chosen label
6) Nearest neighbor logic (with disclaimers), mapping numeric -> user text
"""
# 1) Prepare user_input dataframe
user_input_data = {
'YNURSMDE': [int(YNURSMDE)],
'YMDEYR': [int(YMDEYR)],
'YSOCMDE': [int(YSOCMDE)],
'YMDESUD5ANYO': [int(YMDESUD5ANYO)],
'YMSUD5YANY': [int(YMSUD5YANY)],
'YUSUITHK': [int(YUSUITHK)],
'YMDETXRX': [int(YMDETXRX)],
'YUSUITHKYR': [int(YUSUITHKYR)],
'YMDERSUD5ANY': [int(YMDERSUD5ANY)],
'YUSUIPLNYR': [int(YUSUIPLNYR)],
'YCOUNMDE': [int(YCOUNMDE)],
'YPSY1MDE': [int(YPSY1MDE)],
'YHLTMDE': [int(YHLTMDE)],
'YDOCMDE': [int(YDOCMDE)],
'YPSY2MDE': [int(YPSY2MDE)],
'YMDEHARX': [int(YMDEHARX)],
'LVLDIFMEM2': [int(LVLDIFMEM2)],
'MDEIMPY': [int(MDEIMPY)],
'YMDEHPO': [int(YMDEHPO)],
'YMIMS5YANY': [int(YMIMS5YANY)],
'YMDEIMAD5YR': [int(YMDEIMAD5YR)],
'YMIUD5YANY': [int(YMIUD5YANY)],
'YMDEHPRX': [int(YMDEHPRX)],
'YMIMI5YANY': [int(YMIMI5YANY)],
'YUSUIPLN': [int(YUSUIPLN)],
'YTXMDEYR': [int(YTXMDEYR)],
'YMDEAUD5YR': [int(YMDEAUD5YR)],
'YRXMDEYR': [int(YRXMDEYR)],
'YMDELT': [int(YMDELT)]
}
user_input = pd.DataFrame(user_input_data)
# 2) Make predictions
predictions = predictor.make_predictions(user_input)
# 3) Calculate majority vote (0 or 1) across all models
majority_vote = predictor.get_majority_vote(predictions)
# 4) Count how many 1's in all predictions combined
majority_vote_count = sum([1 for pred in np.concatenate(predictions) if pred == 1])
# 5) Evaluate severity
severity = predictor.evaluate_severity(majority_vote_count)
# 6) Prepare per-model predictions
# We'll group them just like before
results = {
"Concentration_and_Decision_Making": [],
"Sleep_and_Energy_Levels": [],
"Mood_and_Emotional_State": [],
"Appetite_and_Weight_Changes": [],
"Duration_and_Severity_of_Depression_Symptoms": []
}
prediction_groups = {
"Concentration_and_Decision_Making": ["YOWRCONC", "YOWRDCSN"],
"Sleep_and_Energy_Levels": ["YOWRHRS", "YO_MDEA5", "YOWRELES", "YO_MDEA2"],
"Mood_and_Emotional_State": ["YOWRCHR", "YOWRLSIN", "YOWRDEPR", "YODPDISC",
"YOLOSEV", "YODPLSIN", "YODSCEV"],
"Appetite_and_Weight_Changes": ["YO_MDEA3", "YOWRELES"],
"Duration_and_Severity_of_Depression_Symptoms": ["YODPPROB", "YOWRPROB",
"YODPR2WK", "YODSMMDE",
"YOPB2WK"]
}
# We'll keep a record of which model => which predicted label
for i, pred in enumerate(predictions):
model_name = predictor.model_filenames[i].split('.')[0]
pred_value = pred[0]
# Map the prediction value to a human-readable string
if model_name in predictor.prediction_map and pred_value in [0, 1]:
result_text = f"Model {model_name}: {predictor.prediction_map[model_name][pred_value]}"
else:
result_text = f"Model {model_name}: Unknown or out-of-range"
# Append to the appropriate group
found_group = False
for group_name, group_models in prediction_groups.items():
if model_name in group_models:
results[group_name].append(result_text)
found_group = True
break
if not found_group:
# If no group matches, skip or store in "Other"
pass
# 7) Nicely format the results
formatted_results = []
for group, preds in results.items():
if preds:
formatted_results.append(f"Group {group.replace('_', ' ')}:")
formatted_results.append("\n".join(preds))
formatted_results.append("\n")
formatted_results = "\n".join(formatted_results).strip()
if len(formatted_results) == 0:
formatted_results = "No predictions made. Please check your inputs."
# 8) Additional disclaimers if there's a large fraction of unknown
num_unknown = sum(1 for group, preds in results.items() if any("Unknown or out-of-range" in p for p in preds))
if num_unknown > len(predictor.model_filenames) / 2:
severity += " (Unknown prediction count is high. Please consult with a human.)"
############################################################################
# A) Total Patient Count
############################################################################
total_patients = len(df)
total_patient_count_markdown = (
"### Total Patient Count\n"
f"There are **{total_patients}** total patients in the dataset.\n\n"
"This number helps you understand the size of the dataset used."
)
############################################################################
# B) Distribution Plot: All Input Features vs. a single predicted label
############################################################################
# For demonstration, let's pick "YOWRCONC" if it exists in df:
# We'll melt the dataset so that each input feature is in a "FeatureName" column,
# and each distinct category is in "FeatureValue". We'll group by those + label to get counts.
chosen_label = "YOWRCONC"
if chosen_label in df.columns:
# 1) Narrow down to the columns of interest
# We'll only use the input features that exist in df
input_cols_in_df = [c for c in user_input_data.keys() if c in df.columns]
# 2) We'll create a "melted" version of these input features
# i.e., row per (patient_id, FeatureName, FeatureValue)
sub_df = df[input_cols_in_df + [chosen_label]].copy()
# Melt them
melted = sub_df.melt(
id_vars=[chosen_label],
var_name="FeatureName",
value_name="FeatureValue"
)
# 3) Group by (FeatureName, FeatureValue, chosen_label) to get size
dist_data = melted.groupby(["FeatureName", "FeatureValue", chosen_label]).size().reset_index(name="count")
# 4) We'll try to map FeatureValue from numeric -> user-friendly text if possible
# We'll do it only if FeatureName is in reverse_mapping.
def map_value(row):
fn = row["FeatureName"]
fv = row["FeatureValue"]
if fn in reverse_mapping:
if fv in reverse_mapping[fn]:
return reverse_mapping[fn][fv] # e.g. 1->"Yes"
return fv # fallback
dist_data["FeatureValueText"] = dist_data.apply(map_value, axis=1)
# 5) Similarly, map chosen_label (0 or 1) to text if in predictor.prediction_map
if chosen_label in predictor.prediction_map:
def map_label(val):
if val in [0, 1]:
return predictor.prediction_map[chosen_label][val]
return f"Unknown label {val}"
dist_data["LabelText"] = dist_data[chosen_label].apply(map_label)
else:
dist_data["LabelText"] = dist_data[chosen_label].astype(str)
# 6) Now produce a bar chart with facet_col = FeatureName
fig_distribution = px.bar(
dist_data,
x="FeatureValueText",
y="count",
color="LabelText",
facet_col="FeatureName",
facet_col_wrap=4, # how many facets per row
title=f"Distribution of All Input Features vs. {chosen_label}",
height=800
)
fig_distribution.update_layout(legend=dict(title=chosen_label))
# (Optional) Adjust layout or text angle if you have many categories
fig_distribution.update_xaxes(tickangle=45)
else:
# Fallback
fig_distribution = px.bar(title=f"Label {chosen_label} not found in dataset. Distribution not available.")
############################################################################
# C) Nearest Neighbors (Hamming Distance) with disclaimers & user-friendly text
############################################################################
# "Nearest neighbor” methods for high-dimensional or purely categorical data can be non-trivial.
# This demo uses a Hamming distance over all input features, picks K=5.
# In real practice, you'd refine which features to use, how to encode them, etc.
# 1) Build a DataFrame to compare with the user_input
features_to_compare = [col for col in user_input_data if col in df.columns]
user_series = user_input.iloc[0]
# 2) Compute distances
distances = []
for idx, row in df[features_to_compare].iterrows():
d = 0
for col in features_to_compare:
if row[col] != user_series[col]:
d += 1
distances.append(d)
df_with_dist = df.copy()
df_with_dist["distance"] = distances
# 3) Sort and pick top K=5
K = 5
nearest_neighbors = df_with_dist.sort_values("distance", ascending=True).head(K)
# 4) Show how many had the chosen_label=0 vs 1, but also map them
# We'll also demonstrate showing user-friendly text for each neighbor's feature values.
# However, if you have large K or many features, this can be big.
if chosen_label in nearest_neighbors.columns:
nn_label_0 = len(nearest_neighbors[nearest_neighbors[chosen_label] == 0])
nn_label_1 = len(nearest_neighbors[nearest_neighbors[chosen_label] == 1])
if chosen_label in predictor.prediction_map:
label0_text = predictor.prediction_map[chosen_label][0]
label1_text = predictor.prediction_map[chosen_label][1]
else:
label0_text = "Label=0"
label1_text = "Label=1"
else:
nn_label_0 = nn_label_1 = 0
label0_text = "Label=0"
label1_text = "Label=1"
# 5) Build an example table of those neighbors in user-friendly text
neighbor_text_rows = []
for idx, nn_row in nearest_neighbors.iterrows():
# For each feature, map numeric -> user text
row_str_parts = []
row_str_parts.append(f"distance={nn_row['distance']}")
for fcol in features_to_compare:
val = nn_row[fcol]
# try to map
if fcol in reverse_mapping and val in reverse_mapping[fcol]:
val_str = reverse_mapping[fcol][val]
else:
val_str = str(val)
row_str_parts.append(f"{fcol}={val_str}")
# For the label
if chosen_label in nn_row:
lbl_val = nn_row[chosen_label]
if chosen_label in predictor.prediction_map and lbl_val in [0, 1]:
lbl_str = predictor.prediction_map[chosen_label][lbl_val]
else:
lbl_str = str(lbl_val)
row_str_parts.append(f"{chosen_label}={lbl_str}")
neighbor_text_rows.append(" | ".join(row_str_parts))
neighbor_text_block = "\n".join(neighbor_text_rows)
similar_patient_markdown = (
"### Nearest Neighbors (Simple Hamming Distance)\n"
"“Nearest neighbor” methods for high-dimensional or purely categorical data can be non-trivial. "
"This demo simply uses a Hamming distance over all input features and picks **K=5** neighbors.\n\n"
"In a real application, you would refine which features are most relevant, how to encode them, "
"and how many neighbors to select.\n\n"
f"Among these **{K}** nearest neighbors:\n"
f"- **{nn_label_0}** had {label0_text}\n"
f"- **{nn_label_1}** had {label1_text}\n\n"
"Below is a breakdown of each neighbor's key features in user-friendly text:\n\n"
f"```\n{neighbor_text_block}\n```"
)
############################################################################
# Return 8 outputs
############################################################################
return (
formatted_results, # 1) Prediction results (Textbox)
severity, # 2) Mental Health Severity (Textbox)
total_patient_count_markdown, # 3) Total Patient Count (Markdown)
fig_distribution, # 4) Distribution Plot (Plot)
similar_patient_markdown, # 5) Nearest Neighbor Summary (Markdown)
None, # 6) Placeholder if you need more plots
None, # 7) Another placeholder
None # 8) Another placeholder
)
###############################################################################
# 6) Gradio Interface: We'll keep 8 outputs, but only use some in this demo
###############################################################################
def predict_with_text(
YMDEYR, YMDERSUD5ANY, YMDEIMAD5YR, YMIMS5YANY, YMDELT, YMDEHARX,
YMDEHPRX, YMDETXRX, YMDEHPO, YMDEAUD5YR, YMIMI5YANY, YMIUD5YANY,
YMDESUD5ANYO, YNURSMDE, YSOCMDE, YCOUNMDE, YPSY1MDE, YPSY2MDE,
YHLTMDE, YDOCMDE, YTXMDEYR, YUSUITHKYR, YUSUIPLNYR, YUSUITHK,
YUSUIPLN, MDEIMPY, LVLDIFMEM2, YMSUD5YANY, YRXMDEYR
):
# Validate that all required inputs are selected
if not validate_inputs(
YMDEYR, YMDERSUD5ANY, YMDEIMAD5YR, YMIMS5YANY, YMDELT, YMDEHARX,
YMDEHPRX, YMDETXRX, YMDEHPO, YMDEAUD5YR, YMIMI5YANY, YMIUD5YANY,
YMDESUD5ANYO, YNURSMDE, YSOCMDE, YCOUNMDE, YPSY1MDE, YPSY2MDE,
YHLTMDE, YDOCMDE, YTXMDEYR, YUSUITHKYR, YUSUIPLNYR, YUSUITHK,
YUSUIPLN, MDEIMPY, LVLDIFMEM2, YMSUD5YANY, YRXMDEYR
):
return (
"Please select all required fields.", # Prediction Results
"Validation Error", # Severity
"No data", # Total Patient Count
None, # Distribution Plot
"No data", # Nearest Neighbors
None, None, None # Placeholders
)
# Map from user-friendly text to int
user_inputs = {
'YNURSMDE': input_mapping['YNURSMDE'][YNURSMDE],
'YMDEYR': input_mapping['YMDEYR'][YMDEYR],
'YSOCMDE': input_mapping['YSOCMDE'][YSOCMDE],
'YMDESUD5ANYO': input_mapping['YMDESUD5ANYO'][YMDESUD5ANYO],
'YMSUD5YANY': input_mapping['YMSUD5YANY'][YMSUD5YANY],
'YUSUITHK': input_mapping['YUSUITHK'][YUSUITHK],
'YMDETXRX': input_mapping['YMDETXRX'][YMDETXRX],
'YUSUITHKYR': input_mapping['YUSUITHKYR'][YUSUITHKYR],
'YMDERSUD5ANY': input_mapping['YMDERSUD5ANY'][YMDERSUD5ANY],
'YUSUIPLNYR': input_mapping['YUSUIPLNYR'][YUSUIPLNYR],
'YCOUNMDE': input_mapping['YCOUNMDE'][YCOUNMDE],
'YPSY1MDE': input_mapping['YPSY1MDE'][YPSY1MDE],
'YHLTMDE': input_mapping['YHLTMDE'][YHLTMDE],
'YDOCMDE': input_mapping['YDOCMDE'][YDOCMDE],
'YPSY2MDE': input_mapping['YPSY2MDE'][YPSY2MDE],
'YMDEHARX': input_mapping['YMDEHARX'][YMDEHARX],
'LVLDIFMEM2': input_mapping['LVLDIFMEM2'][LVLDIFMEM2],
'MDEIMPY': input_mapping['MDEIMPY'][MDEIMPY],
'YMDEHPO': input_mapping['YMDEHPO'][YMDEHPO],
'YMIMS5YANY': input_mapping['YMIMS5YANY'][YMIMS5YANY],
'YMDEIMAD5YR': input_mapping['YMDEIMAD5YR'][YMDEIMAD5YR],
'YMIUD5YANY': input_mapping['YMIUD5YANY'][YMIUD5YANY],
'YMDEHPRX': input_mapping['YMDEHPRX'][YMDEHPRX],
'YMIMI5YANY': input_mapping['YMIMI5YANY'][YMIMI5YANY],
'YUSUIPLN': input_mapping['YUSUIPLN'][YUSUIPLN],
'YTXMDEYR': input_mapping['YTXMDEYR'][YTXMDEYR],
'YMDEAUD5YR': input_mapping['YMDEAUD5YR'][YMDEAUD5YR],
'YRXMDEYR': input_mapping['YRXMDEYR'][YRXMDEYR],
'YMDELT': input_mapping['YMDELT'][YMDELT]
}
# Pass our mapped values into the original 'predict' function
return predict(**user_inputs)
###############################################################################
# 7) Define and Launch Gradio Interface
###############################################################################
import sys
# We have 8 outputs (some are placeholders)
outputs = [
gr.Textbox(label="Prediction Results", lines=30),
gr.Textbox(label="Mental Health Severity", lines=4),
gr.Markdown(label="Total Patient Count"),
gr.Plot(label="Distribution of All Input Features vs. One Label"),
gr.Markdown(label="Nearest Neighbors Summary"),
gr.Plot(label="Placeholder Plot"),
gr.Plot(label="Placeholder Plot"),
gr.Plot(label="Placeholder Plot")
]
# Define the inputs
inputs = [
# Major Depressive Episode (MDE) questions
gr.Dropdown(list(input_mapping['YMDEYR'].keys()), label="YMDEYR: PAST YEAR MDE?"),
gr.Dropdown(list(input_mapping['YMDERSUD5ANY'].keys()), label="YMDERSUD5ANY: MDE OR SUBSTANCE USE DISORDER - ANY"),
gr.Dropdown(list(input_mapping['YMDEIMAD5YR'].keys()), label="YMDEIMAD5YR: MDE + ALCOHOL USE DISORDER?"),
gr.Dropdown(list(input_mapping['YMIMS5YANY'].keys()), label="YMIMS5YANY: MDE + SUBSTANCE USE DISORDER?"),
gr.Dropdown(list(input_mapping['YMDELT'].keys()), label="YMDELT: EVER HAD MDE LIFETIME?"),
gr.Dropdown(list(input_mapping['YMDEHARX'].keys()), label="YMDEHARX: SAW HEALTH PROF + MEDS FOR MDE"),
gr.Dropdown(list(input_mapping['YMDEHPRX'].keys()), label="YMDEHPRX: SAW HEALTH PROF OR MEDS FOR MDE"),
gr.Dropdown(list(input_mapping['YMDETXRX'].keys()), label="YMDETXRX: TREATMENT/COUNSELING FOR MDE"),
gr.Dropdown(list(input_mapping['YMDEHPO'].keys()), label="YMDEHPO: HEALTH PROF ONLY FOR MDE"),
gr.Dropdown(list(input_mapping['YMDEAUD5YR'].keys()), label="YMDEAUD5YR: MDE + ALCOHOL USE DISORDER"),
gr.Dropdown(list(input_mapping['YMIMI5YANY'].keys()), label="YMIMI5YANY: MDE + ILL DRUG USE DISORDER"),
gr.Dropdown(list(input_mapping['YMIUD5YANY'].keys()), label="YMIUD5YANY: MDE + ILL DRUG USE DISORDER"),
gr.Dropdown(list(input_mapping['YMDESUD5ANYO'].keys()), label="YMDESUD5ANYO: MDE vs. SUD vs. BOTH vs. NEITHER"),
# Consultations
gr.Dropdown(list(input_mapping['YNURSMDE'].keys()), label="YNURSMDE: NURSE / OT FOR MDE"),
gr.Dropdown(list(input_mapping['YSOCMDE'].keys()), label="YSOCMDE: SOCIAL WORKER FOR MDE"),
gr.Dropdown(list(input_mapping['YCOUNMDE'].keys()), label="YCOUNMDE: COUNSELOR FOR MDE"),
gr.Dropdown(list(input_mapping['YPSY1MDE'].keys()), label="YPSY1MDE: PSYCHOLOGIST FOR MDE"),
gr.Dropdown(list(input_mapping['YPSY2MDE'].keys()), label="YPSY2MDE: PSYCHIATRIST FOR MDE"),
gr.Dropdown(list(input_mapping['YHLTMDE'].keys()), label="YHLTMDE: HEALTH PROF FOR MDE"),
gr.Dropdown(list(input_mapping['YDOCMDE'].keys()), label="YDOCMDE: GP/FAMILY MD FOR MDE"),
gr.Dropdown(list(input_mapping['YTXMDEYR'].keys()), label="YTXMDEYR: DOCTOR/HEALTH PROF FOR MDE THIS YEAR"),
# Suicidal thoughts / plans
gr.Dropdown(list(input_mapping['YUSUITHKYR'].keys()), label="YUSUITHKYR: SERIOUSLY THOUGHT ABOUT KILLING SELF"),
gr.Dropdown(list(input_mapping['YUSUIPLNYR'].keys()), label="YUSUIPLNYR: MADE PLANS TO KILL SELF"),
gr.Dropdown(list(input_mapping['YUSUITHK'].keys()), label="YUSUITHK: THINK ABOUT KILLING SELF (12 MONTHS)"),
gr.Dropdown(list(input_mapping['YUSUIPLN'].keys()), label="YUSUIPLN: MADE PLANS TO KILL SELF (12 MONTHS)"),
# Impairment
gr.Dropdown(list(input_mapping['MDEIMPY'].keys()), label="MDEIMPY: MDE WITH SEVERE ROLE IMPAIRMENT?"),
gr.Dropdown(list(input_mapping['LVLDIFMEM2'].keys()), label="LVLDIFMEM2: DIFFICULTY REMEMBERING/CONCENTRATING"),
gr.Dropdown(list(input_mapping['YMSUD5YANY'].keys()), label="YMSUD5YANY: MDE + SUBSTANCE USE DISORDER?"),
gr.Dropdown(list(input_mapping['YRXMDEYR'].keys()), label="YRXMDEYR: USED MEDS FOR MDE IN PAST YEAR?")
]
# Custom CSS (optional)
custom_css = """
.gradio-container * {
color: #1B1212 !important;
}
.gradio-container .form .form-group label {
color: #1B1212 !important;
}
.gradio-container .output-textbox,
.gradio-container .output-textbox textarea {
color: #1B1212 !important;
}
.gradio-container .label,
.gradio-container .input-label {
color: #1B1212 !important;
}
"""
# Build the interface
interface = gr.Interface(
fn=predict_with_text,
inputs=inputs,
outputs=outputs,
title="Adolescents with Substance Use Mental Health Screening (NSDUH Data)",
css=custom_css,
)
if __name__ == "__main__":
interface.launch()
|