from functools import partial from itertools import chain from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Tuple from ..extras.constants import IGNORE_INDEX from ..extras.logging import get_logger from .utils import Role if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments from transformers.tokenization_utils import PreTrainedTokenizer from ..hparams import DataArguments from .template import Template logger = get_logger(__name__) def preprocess_pretrain_dataset( examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments" ) -> Dict[str, List[List[int]]]: # build grouped texts with format `X1 X2 X3 ...` text_examples = [examples["prompt"][i][0]["content"] for i in range(len(examples["prompt"]))] tokenized_examples = tokenizer(text_examples, add_special_tokens=False) for i in range(len(tokenized_examples["input_ids"])): tokenized_examples["input_ids"][i] += [tokenizer.eos_token_id] tokenized_examples["attention_mask"][i] += [1] concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()} total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]]) block_size = data_args.cutoff_len # we drop the small remainder, and if the total_length < block_size, we exclude this batch total_length = (total_length // block_size) * block_size # split by chunks of cutoff_len result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } return result def preprocess_supervised_dataset( examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", template: "Template", data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # build inputs with format ` X Y ` and labels with format ` ... Y ` # for multiturn examples, we only mask the prompt part in each prompt-response pair. model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: continue messages = examples["prompt"][i] + examples["response"][i] input_ids, labels = [], [] for turn_idx, (source_ids, target_ids) in enumerate( template.encode_multiturn( tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len ) ): if data_args.train_on_prompt: source_mask = source_ids elif turn_idx != 0 and template.efficient_eos: source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1) else: source_mask = [IGNORE_INDEX] * len(source_ids) input_ids += source_ids + target_ids labels += source_mask + target_ids if template.efficient_eos: input_ids += [tokenizer.eos_token_id] labels += [tokenizer.eos_token_id] model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) return model_inputs def preprocess_packed_supervised_dataset( examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", template: "Template", data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # build inputs with format ` X1 Y1 X2 Y2 ` # and labels with format ` ... Y1 ... Y2 ` model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} input_ids, labels = [], [] for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: continue messages = examples["prompt"][i] + examples["response"][i] for turn_idx, (source_ids, target_ids) in enumerate( template.encode_multiturn(tokenizer, messages, examples["system"][i], examples["tools"][i]) ): if data_args.train_on_prompt: source_mask = source_ids elif turn_idx != 0 and template.efficient_eos: source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1) else: source_mask = [IGNORE_INDEX] * len(source_ids) input_ids += source_ids + target_ids labels += source_mask + target_ids if template.efficient_eos: input_ids += [tokenizer.eos_token_id] labels += [tokenizer.eos_token_id] total_length = len(input_ids) block_size = data_args.cutoff_len # we drop the small remainder, and if the total_length < block_size, we exclude this batch total_length = (total_length // block_size) * block_size # split by chunks of cutoff_len for i in range(0, total_length, block_size): model_inputs["input_ids"].append(input_ids[i : i + block_size]) model_inputs["attention_mask"].append([1] * block_size) model_inputs["labels"].append(labels[i : i + block_size]) return model_inputs def preprocess_unsupervised_dataset( examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", template: "Template", data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # build inputs with format ` X` and labels with format `Y ` model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1: continue if len(examples["response"][i]) == 1: messages = examples["prompt"][i] + examples["response"][i] else: messages = examples["prompt"][i] + [{"role": Role.ASSISTANT, "content": ""}] input_ids, labels = template.encode_oneturn( tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len ) if template.efficient_eos: labels += [tokenizer.eos_token_id] model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) return model_inputs def preprocess_pairwise_dataset( examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", template: "Template", data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # build input pairs with format ` X`, `Y1 ` and `Y2 ` model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []} for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2: continue chosen_messages = examples["prompt"][i] + [examples["response"][i][0]] rejected_messages = examples["prompt"][i] + [examples["response"][i][1]] prompt_ids, chosen_ids = template.encode_oneturn( tokenizer, chosen_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len ) _, rejected_ids = template.encode_oneturn( tokenizer, rejected_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len ) if template.efficient_eos: chosen_ids += [tokenizer.eos_token_id] rejected_ids += [tokenizer.eos_token_id] model_inputs["prompt_ids"].append(prompt_ids) model_inputs["chosen_ids"].append(chosen_ids) model_inputs["rejected_ids"].append(rejected_ids) return model_inputs def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) print("label_ids:\n{}".format(example["labels"])) print( "labels:\n{}".format( tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False) ) ) def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: print("prompt_ids:\n{}".format(example["prompt_ids"])) print("prompt:\n{}".format(tokenizer.decode(example["prompt_ids"], skip_special_tokens=False))) print("chosen_ids:\n{}".format(example["chosen_ids"])) print("chosen:\n{}".format(tokenizer.decode(example["chosen_ids"], skip_special_tokens=False))) print("rejected_ids:\n{}".format(example["rejected_ids"])) print("rejected:\n{}".format(tokenizer.decode(example["rejected_ids"], skip_special_tokens=False))) def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) def get_preprocess_and_print_func( tokenizer: "PreTrainedTokenizer", template: "Template", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", stage: Literal["pt", "sft", "rm", "ppo"], ) -> Tuple[Callable, Callable]: if stage == "pt": preprocess_func = partial(preprocess_pretrain_dataset, tokenizer=tokenizer, data_args=data_args) print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer) elif stage == "sft" and not training_args.predict_with_generate: if data_args.sft_packing: preprocess_func = partial( preprocess_packed_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args ) else: preprocess_func = partial( preprocess_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args ) print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer) elif stage == "rm": preprocess_func = partial( preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args ) print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer) else: preprocess_func = partial( preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args ) print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer) return preprocess_func, print_function