Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Converts the InternLM2 model in the same format as LLaMA2. | |
# Usage: python llamafy_internlm2.py --input_dir input --output_dir output --shard_size 10GB | |
# Warning: We have found that the converted model cannot infer correctly. It will be fixed later. | |
import json | |
import os | |
from collections import OrderedDict | |
from typing import Any, Dict, Optional | |
import fire | |
import torch | |
from safetensors.torch import save_file | |
from tqdm import tqdm | |
from transformers.modeling_utils import ( | |
SAFE_WEIGHTS_INDEX_NAME, | |
SAFE_WEIGHTS_NAME, | |
WEIGHTS_INDEX_NAME, | |
WEIGHTS_NAME, | |
shard_checkpoint, | |
) | |
CONFIG_NAME = "config.json" | |
def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool): | |
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: | |
internlm2_config_dict: Dict[str, Any] = json.load(f) | |
internlm2_state_dict: Dict[str, torch.Tensor] = OrderedDict() | |
for filepath in tqdm(os.listdir(input_dir), desc="Load weights"): | |
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"): | |
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu") | |
internlm2_state_dict.update(shard_weight) | |
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict() | |
for key, value in tqdm(internlm2_state_dict.items(), desc="Convert format"): | |
if "output" in key: | |
llama2_state_dict[key.replace("output", "lm_head")] = value | |
elif "tok_embeddings" in key: | |
llama2_state_dict[key.replace("tok_embeddings", "embed_tokens")] = value | |
elif "wqkv" in key: | |
num_q_heads = internlm2_config_dict["num_attention_heads"] | |
num_kv_heads = internlm2_config_dict["num_key_value_heads"] | |
q_size = value.size(0) // (num_q_heads + 2 * num_kv_heads) * num_q_heads | |
kv_size = value.size(0) // (num_q_heads + 2 * num_kv_heads) * num_kv_heads | |
llama2_state_dict[key.replace("attention.wqkv", "self_attn.q_proj")] = value[:q_size, ...] | |
llama2_state_dict[key.replace("attention.wqkv", "self_attn.k_proj")] = value[ | |
q_size : q_size + kv_size, ... | |
] | |
llama2_state_dict[key.replace("attention.wqkv", "self_attn.v_proj")] = value[q_size + kv_size :, ...] | |
elif "wo" in key: | |
llama2_state_dict[key.replace("attention.wo", "self_attn.o_proj")] = value | |
elif "attention_norm" in key: | |
llama2_state_dict[key.replace("attention_norm", "input_layernorm")] = value | |
elif "ffn_norm" in key: | |
llama2_state_dict[key.replace("ffn_norm", "post_attention_layernorm")] = value | |
elif "w1" in key: | |
llama2_state_dict[key.replace("feed_forward.w1", "mlp.gate_proj")] = value | |
elif "w2" in key: | |
llama2_state_dict[key.replace("feed_forward.w2", "mlp.down_proj")] = value | |
elif "w3" in key: | |
llama2_state_dict[key.replace("feed_forward.w3", "mlp.up_proj")] = value | |
else: | |
llama2_state_dict[key] = value | |
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME | |
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name) | |
for shard_file, shard in tqdm(shards.items(), desc="Save weights"): | |
if save_safetensors: | |
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) | |
else: | |
torch.save(shard, os.path.join(output_dir, shard_file)) | |
if index is None: | |
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME))) | |
else: | |
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME | |
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: | |
json.dump(index, f, indent=2, sort_keys=True) | |
print("Model weights saved in {}".format(output_dir)) | |
def save_config(input_dir: str, output_dir: str): | |
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: | |
llama2_config_dict: Dict[str, Any] = json.load(f) | |
llama2_config_dict["architectures"] = ["LlamaForCausalLM"] | |
llama2_config_dict.pop("auto_map", None) | |
llama2_config_dict.pop("bias", None) | |
llama2_config_dict.pop("rope_scaling", None) | |
llama2_config_dict["model_type"] = "llama" | |
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f: | |
json.dump(llama2_config_dict, f, indent=2) | |
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME))) | |
def llamafy_internlm2(input_dir: str, output_dir: str, shard_size: str, save_safetensors: Optional[bool] = False): | |
try: | |
os.makedirs(output_dir, exist_ok=False) | |
except Exception as e: | |
raise print("Output dir already exists", e) | |
save_weight(input_dir, output_dir, shard_size, save_safetensors) | |
save_config(input_dir, output_dir) | |
if __name__ == "__main__": | |
fire.Fire(llamafy_internlm2) | |