Spaces:
Runtime error
Runtime error
from typing import TYPE_CHECKING, Optional, Tuple | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
from transformers.integrations import is_deepspeed_zero3_enabled | |
from transformers.utils.versions import require_version | |
from trl import AutoModelForCausalLMWithValueHead | |
from ..extras.logging import get_logger | |
from ..extras.misc import count_parameters, get_current_device, try_download_model_from_ms | |
from .adapter import init_adapter | |
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model | |
from .utils import load_valuehead_params, register_autoclass | |
if TYPE_CHECKING: | |
from transformers import PreTrainedModel, PreTrainedTokenizer | |
from ..hparams import FinetuningArguments, ModelArguments | |
logger = get_logger(__name__) | |
require_version("transformers>=4.36.2", "To fix: pip install transformers>=4.36.2") | |
require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3") | |
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0") | |
require_version("peft>=0.7.0", "To fix: pip install peft>=0.7.0") | |
require_version("trl>=0.7.6", "To fix: pip install trl>=0.7.6") | |
def load_model_and_tokenizer( | |
model_args: "ModelArguments", | |
finetuning_args: "FinetuningArguments", | |
is_trainable: Optional[bool] = False, | |
add_valuehead: Optional[bool] = False, | |
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]: | |
r""" | |
Loads pretrained model and tokenizer. | |
Support both training and inference. | |
""" | |
try_download_model_from_ms(model_args) | |
config_kwargs = { | |
"trust_remote_code": True, | |
"cache_dir": model_args.cache_dir, | |
"revision": model_args.model_revision, | |
"token": model_args.hf_hub_token, | |
} | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
use_fast=model_args.use_fast_tokenizer, | |
split_special_tokens=model_args.split_special_tokens, | |
padding_side="right", | |
**config_kwargs, | |
) | |
patch_tokenizer(tokenizer) | |
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) | |
patch_config(config, tokenizer, model_args, config_kwargs, is_trainable) | |
model = None | |
if is_trainable and model_args.use_unsloth: | |
require_version("unsloth", "Follow the instructions at: https://github.com/unslothai/unsloth") | |
from unsloth import FastLlamaModel, FastMistralModel # type: ignore | |
unsloth_kwargs = { | |
"model_name": model_args.model_name_or_path, | |
"max_seq_length": model_args.model_max_length, | |
"dtype": model_args.compute_dtype, | |
"load_in_4bit": model_args.quantization_bit == 4, | |
"token": model_args.hf_hub_token, | |
"device_map": get_current_device(), | |
"rope_scaling": getattr(config, "rope_scaling", None), | |
} | |
if getattr(config, "model_type", None) == "llama": | |
model, _ = FastLlamaModel.from_pretrained(**unsloth_kwargs) | |
elif getattr(config, "model_type", None) == "mistral": | |
model, _ = FastMistralModel.from_pretrained(**unsloth_kwargs) | |
else: | |
logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None))) | |
model_args.use_unsloth = False | |
if model_args.adapter_name_or_path: | |
model_args.adapter_name_or_path = None | |
logger.warning("Unsloth does not support loading adapters.") | |
if model is None: | |
model = AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
config=config, | |
torch_dtype=model_args.compute_dtype, | |
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()), | |
**config_kwargs, | |
) | |
patch_model(model, tokenizer, model_args, is_trainable) | |
register_autoclass(config, model, tokenizer) | |
model = init_adapter(model, model_args, finetuning_args, is_trainable) | |
if add_valuehead: | |
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model) | |
patch_valuehead_model(model) | |
if model_args.adapter_name_or_path is not None: | |
vhead_path = model_args.adapter_name_or_path[-1] | |
else: | |
vhead_path = model_args.model_name_or_path | |
vhead_params = load_valuehead_params(vhead_path, model_args) | |
if vhead_params is not None: | |
model.load_state_dict(vhead_params, strict=False) | |
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path)) | |
if not is_trainable: | |
model.requires_grad_(False) | |
model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model | |
model.eval() | |
else: | |
model.train() | |
trainable_params, all_param = count_parameters(model) | |
logger.info( | |
"trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( | |
trainable_params, all_param, 100 * trainable_params / all_param | |
) | |
) | |
if not is_trainable: | |
logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.") | |
return model, tokenizer | |