import json from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Define the schema for the database db_schema = { "products": ["product_id", "name", "price", "description", "type"], "orders": ["order_id", "product_id", "quantity", "order_date"], "customers": ["customer_id", "name", "email", "phone_number"] } # Load the model and tokenizer model_name = "EleutherAI/gpt-neox-20b" # You can also use "Llama-2-7b" or another model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) def generate_sql_query(context, question): """ Generate an SQL query based on the question and context. Args: context (str): Description of the database schema or table relationships. question (str): User's natural language query. Returns: str: Generated SQL query. """ # Prepare the prompt prompt = f""" Context: {context} Question: {question} Write an SQL query to address the question based on the context. Query: """ # Tokenize input inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to("cuda" if torch.cuda.is_available() else "cpu") # Generate SQL query output = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True) query = tokenizer.decode(output[0], skip_special_tokens=True) # Extract query from the output sql_query = query.split("Query:")[-1].strip() return sql_query # Schema as a context for the model schema_description = json.dumps(db_schema, indent=4) # # Example interactive questions # print("Ask a question about the database schema.") # while True: # user_question = input("Question: ") # if user_question.lower() in ["exit", "quit"]: # print("Exiting...") # break user_question = 'Show all products that cost more than $50' # Generate SQL query sql_query = generate_sql_query(schema_description, user_question) print(f"Generated SQL Query:\n{sql_query}\n")