# import transformers as t # assert t.__version__=='4.25.1', "Transformers version should be as specified" # import torch from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel #from huggingface_hub import notebook_login # For video display: from IPython.display import HTML from matplotlib import pyplot as plt from pathlib import Path from PIL import Image from torch import autocast from torchvision import transforms as tfms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer, logging import os import io #import base64 import torch.nn.functional as F #from pytorch_grad_cam.utils.image import show_cam_on_image torch.manual_seed(1) #if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login() # Supress some unnecessary warnings when loading the CLIPTextModel logging.set_verbosity_error() # Set device torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" import sys,gc,traceback import fastcore.all as fc # %% ../nbs/11_initializing.ipynb 11 def clean_ipython_hist(): # Code in this function mainly copied from IPython source if not 'get_ipython' in globals(): return ip = get_ipython() user_ns = ip.user_ns ip.displayhook.flush() pc = ip.displayhook.prompt_count + 1 for n in range(1, pc): user_ns.pop('_i'+repr(n),None) user_ns.update(dict(_i='',_ii='',_iii='')) hm = ip.history_manager hm.input_hist_parsed[:] = [''] * pc hm.input_hist_raw[:] = [''] * pc hm._i = hm._ii = hm._iii = hm._i00 = '' # %% ../nbs/11_initializing.ipynb 12 def clean_tb(): # h/t Piotr Czapla if hasattr(sys, 'last_traceback'): traceback.clear_frames(sys.last_traceback) delattr(sys, 'last_traceback') if hasattr(sys, 'last_type'): delattr(sys, 'last_type') if hasattr(sys, 'last_value'): delattr(sys, 'last_value') # %% ../nbs/11_initializing.ipynb 13 def clean_mem(): clean_tb() clean_ipython_hist() gc.collect() torch.cuda.empty_cache() clean_mem() # Load the autoencoder model which will be used to decode the latents into image space. vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") # Load the tokenizer and text encoder to tokenize and encode the text. tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") # The UNet model for generating the latents. unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") # The noise scheduler scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) # To the GPU we go! vae = vae.to(torch_device) text_encoder = text_encoder.to(torch_device) unet = unet.to(torch_device); embeds_folder = Path('./paintings_embed') file_names = [path.name for path in embeds_folder.glob('*') if path.is_file()] print(file_names) style_names = [list(torch.load(embeds_folder/file).keys())[0] for file in file_names] style_names num_added_tokens = tokenizer.add_tokens(style_names) added_tokens = list(map(tokenizer.added_tokens_encoder.get,style_names)) added_tokens,style_names text_encoder.resize_token_embeddings(len(tokenizer)) text_encoder.text_model.embeddings.token_embedding style_dict = {} list_styles = [torch.load(embeds_folder/file) for file in file_names] # for k,v in list_styles[0].items(): # print(k,v.shape) style_dict = {style:embedding for each_style in list_styles for style,embedding in each_style.items()} list(style_dict) for token,style in zip(added_tokens,style_names): text_encoder.text_model.embeddings.token_embedding.weight.data[token] = style_dict[style] # #checking if we added the embeddings properly to text_encoder # ft_dict = torch.load(embeds_folder/'fairy-tale-painting_embeds.bin') # list(ft_dict.keys())[0] # ft_dict[''][:10] clean_mem() # text_encoder.get_input_embeddings()(torch.tensor(49408, device=torch_device))[:10] # Prep Scheduler def set_timesteps(scheduler, num_inference_steps): scheduler.set_timesteps(num_inference_steps) scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925 def pil_to_latent(input_im): # Single image -> single latent in a batch (so size 1, 4, 64, 64) with torch.no_grad(): latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling return 0.18215 * latent.latent_dist.sample() def latents_to_pil(latents): # bath of latents -> list of images latents = (1 / 0.18215) * latents with torch.no_grad(): image = vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.detach().cpu().permute(0, 2, 3, 1).numpy() images = (image * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images # Access the embedding layer token_emb_layer = text_encoder.text_model.embeddings.token_embedding token_emb_layer # Vocab size 49408, emb_dim 768 pos_emb_layer = text_encoder.text_model.embeddings.position_embedding position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] position_embeddings = pos_emb_layer(position_ids) print(position_embeddings.shape) def get_output_embeds(input_embeddings): # CLIP's text model uses causal mask, so we prepare it here: bsz, seq_len = input_embeddings.shape[:2] causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) # Getting the output embeddings involves calling the model with passing output_hidden_states=True # so that it doesn't just return the pooled final predictions: encoder_outputs = text_encoder.text_model.encoder( inputs_embeds=input_embeddings, attention_mask=None, # We aren't using an attention mask so that can be None causal_attention_mask=causal_attention_mask.to(torch_device), output_attentions=None, output_hidden_states=True, # We want the output embs not the final output return_dict=None, ) # We're interested in the output hidden state only output = encoder_outputs[0] # There is a final layer norm we need to pass these through output = text_encoder.text_model.final_layer_norm(output) # And now they're ready! return output #Generating an image with these modified embeddings def generate_with_embs_custom(text_embeddings,seed): height = 512 # default height of Stable Diffusion width = 512 # default width of Stable Diffusion num_inference_steps = 30 # Number of denoising steps guidance_scale = 7.5 # Scale for classifier-free guidance generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise batch_size = 1 max_length = text_embeddings.shape[1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Prep Scheduler set_timesteps(scheduler, num_inference_steps) # Prep latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Loop for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # predict the noise residual with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # perform guidance noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample return latents_to_pil(latents)[0] # ref_image = Image.open('C:/Users/shivs/Downloads/lg.jpg').resize((512,512)) # ref_latent = pil_to_latent(ref_image) ## Guidance through Custom Loss Function def custom_loss(latent,ref_latent): error = F.mse_loss(0.5*latent,0.8*ref_latent) return error class Styles_paintings(): def __init__(self,prompt): self.output_styles = [] self.prompt = prompt self.style_names = list(style_dict) self.seeds = [1024+i for i in range(len(self.style_names))] def generate_styles(self): #print('The Values are ', list(style_dict)[0]) for seed,style_name in zip(self.seeds,self.style_names): # Tokenize prompt = f'{self.prompt} in the style of {style_name}' text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") input_ids = text_input.input_ids.to(torch_device) # Get token embeddings token_embeddings = token_emb_layer(input_ids) # Combine with pos embs input_embeddings = token_embeddings + position_embeddings # Feed through to get final output embs modified_output_embeddings = get_output_embeds(input_embeddings) # And generate an image with this: self.output_styles.append(generate_with_embs_custom(modified_output_embeddings,seed)) def generate_styles_with_custom_loss(self, image): height = 512 # default height of Stable Diffusion width = 512 # default width of Stable Diffusion num_inference_steps = 10 #@param # Number of denoising steps guidance_scale = 8 #@param # Scale for classifier-free guidance batch_size = 1 custom_loss_scale = 200 #@param print('image shape there is',image.size) self.output_styles_with_custom_loss = [] #ref_image = Image.open('C:/Users/shivs/Downloads/ig.jpg').resize((512,512)) ref_latent = pil_to_latent(image) for seed,style_name in zip(self.seeds,self.style_names): # Tokenize prompt = f'{self.prompt} in the style of {style_name}' generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise print(f' the prompt is : {prompt} with seed value :{seed}') # Prep text text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") with torch.no_grad(): text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] # And the uncond. input as before: max_length = text_input.input_ids.shape[-1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Prep Scheduler set_timesteps(scheduler, num_inference_steps) # Prep latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator,) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Loop for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # predict the noise residual with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # perform CFG noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) #### ADDITIONAL GUIDANCE ### if i%5 == 0: # Requires grad on the latents latents = latents.detach().requires_grad_() # Get the predicted x0: latents_x0 = latents - sigma * noise_pred #latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample # Decode to image space #denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) # Calculate loss loss = custom_loss(latents_x0,ref_latent) * custom_loss_scale #loss = blue_loss(denoised_images) * blue_loss_scale # Occasionally print it out if i%10==0: print(i, 'loss:', loss.item()) # Get gradient cond_grad = torch.autograd.grad(loss, latents)[0] # Modify the latents based on this gradient latents = latents.detach() - cond_grad * sigma**2 # Now step with scheduler latents = scheduler.step(noise_pred, t, latents).prev_sample self.output_styles_with_custom_loss.append(latents_to_pil(latents)[0]) def generate_final_image(im1,in_prompt="an oil painting of an baby girl with flowers in a park"): paintings = Styles_paintings(in_prompt) paintings.generate_styles() r_image = im1.resize((512,512)) print('image shape is',r_image.size) paintings.generate_styles_with_custom_loss(r_image) print(len(paintings.output_styles)) #return [paintings.output_styles[0]], [paintings.output_styles[1]],[paintings.output_styles[2]],[paintings.output_styles[3]],[paintings.output_styles[4]], [paintings.output_styles_with_custom_loss[0]],[paintings.output_styles_with_custom_loss[1]],[paintings.output_styles_with_custom_loss[2]],[paintings.output_styles_with_custom_loss[3]],[paintings.output_styles_with_custom_loss[4]] return [paintings.output_styles[0]], [paintings.output_styles[1]],[paintings.output_styles_with_custom_loss[0]],[paintings.output_styles_with_custom_loss[1]]