Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,106 @@
|
|
|
|
|
|
|
|
|
|
1 |
from langchain_community.vectorstores import FAISS
|
2 |
-
from langchain_community.embeddings import OpenAIEmbeddings
|
3 |
-
from langchain.prompts import PromptTemplate
|
4 |
-
from langchain.chains import RetrievalQAWithSourcesChain
|
5 |
-
from langchain_openai import OpenAIEmbeddings, OpenAI
|
6 |
-
# Gradio imports
|
7 |
-
import gradio as gr
|
8 |
-
|
9 |
-
|
10 |
from langchain.docstore.document import Document
|
11 |
-
import
|
12 |
-
import
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
documents = [
|
51 |
Document(
|
52 |
page_content=text,
|
@@ -57,26 +111,20 @@ documents = [
|
|
57 |
|
58 |
vector_store = FAISS.from_documents(documents, embedding_model)
|
59 |
|
60 |
-
# Step
|
61 |
-
prompt_template = PromptTemplate(
|
62 |
-
input_variables=["context", "question"],
|
63 |
-
template="Use the following context to answer the question.\nContext: {context}\nQuestion: {question}\nAnswer:"
|
64 |
-
)
|
65 |
-
|
66 |
retriever = vector_store.as_retriever()
|
67 |
-
qa_chain = RetrievalQAWithSourcesChain.from_chain_type(
|
68 |
-
llm=OpenAI(temperature=0),
|
69 |
-
chain_type="stuff",
|
70 |
-
retriever=retriever,
|
71 |
-
return_source_documents=True
|
72 |
-
)
|
73 |
|
74 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def smart_search(query):
|
76 |
-
|
77 |
-
return result['answer']
|
78 |
|
79 |
-
#
|
80 |
iface = gr.Interface(
|
81 |
fn=smart_search,
|
82 |
inputs=gr.Textbox(label="Ask a Question", placeholder="Enter your question here..."),
|
@@ -86,4 +134,3 @@ iface = gr.Interface(
|
|
86 |
|
87 |
if __name__ == "__main__":
|
88 |
iface.launch()
|
89 |
-
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import pandas as pd
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
from langchain_community.vectorstores import FAISS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from langchain.docstore.document import Document
|
7 |
+
import gradio as gr
|
8 |
+
from selenium import webdriver
|
9 |
+
from selenium.webdriver.chrome.service import Service as ChromeService
|
10 |
+
from selenium.webdriver.common.by import By
|
11 |
+
from selenium.webdriver.chrome.options import Options
|
12 |
+
from webdriver_manager.chrome import ChromeDriverManager
|
13 |
+
import time
|
14 |
+
|
15 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
16 |
+
from selenium.webdriver.support import expected_conditions as EC
|
17 |
+
from selenium.webdriver.common.by import By
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
# Step 1: Scrape Course Data
|
24 |
+
def scrape_courses(url):
|
25 |
+
response = requests.get(url)
|
26 |
+
soup = BeautifulSoup(response.content, "html.parser")
|
27 |
+
|
28 |
+
# Debug: Print the soup structure
|
29 |
+
# print(soup.prettify())
|
30 |
+
|
31 |
+
courses = []
|
32 |
+
for course in soup.find_all("div", class_="course-block"):
|
33 |
+
title = course.find("div", class_="course-title").get_text(strip=True) if course.find("div", class_="course-title") else "No Title"
|
34 |
+
description = course.find("div", class_="course-description").get_text(strip=True) if course.find("div", class_="course-description") else "No Description"
|
35 |
+
courses.append({"title": title, "description": description})
|
36 |
+
|
37 |
+
if not courses:
|
38 |
+
print("No data found! Please check the website structure or the scraping logic.")
|
39 |
+
return courses
|
40 |
+
|
41 |
+
|
42 |
+
def scrape_courses_with_selenium(url):
|
43 |
+
# Set up Selenium WebDriver options
|
44 |
+
options = Options()
|
45 |
+
options.headless = True # Run in headless mode
|
46 |
+
driver = webdriver.Chrome(service=ChromeService(ChromeDriverManager().install()), options=options)
|
47 |
+
|
48 |
+
# Open the webpage
|
49 |
+
driver.get(url)
|
50 |
+
|
51 |
+
# Wait for course-block elements to be present
|
52 |
+
try:
|
53 |
+
WebDriverWait(driver, 20).until(
|
54 |
+
EC.presence_of_all_elements_located((By.CLASS_NAME, "course-block"))
|
55 |
+
)
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error: {e}")
|
58 |
+
driver.quit()
|
59 |
+
return []
|
60 |
+
|
61 |
+
# Now scrape the courses
|
62 |
+
courses = []
|
63 |
+
try:
|
64 |
+
course_elements = driver.find_elements(By.CLASS_NAME, "course-title")
|
65 |
+
print(f"Found {len(course_elements)} courses") # Debugging line
|
66 |
+
for course in course_elements:
|
67 |
+
title = course.find_element(By.CLASS_NAME, "course-title").text if course.find_element(By.CLASS_NAME, "course-title") else "No Title"
|
68 |
+
description = course.find_element(By.CLASS_NAME, "course-description").text if course.find_element(By.CLASS_NAME, "course-description") else "No Description"
|
69 |
+
courses.append({"title": title, "description": description})
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error scraping courses: {e}")
|
72 |
+
|
73 |
+
driver.quit()
|
74 |
+
return courses
|
75 |
+
|
76 |
+
|
77 |
+
# Example usage
|
78 |
+
url = "https://courses.analyticsvidhya.com/pages/all-free-courses" # Replace with the actual URL
|
79 |
+
courses = scrape_courses_with_selenium(url)
|
80 |
+
|
81 |
+
# Print or process the data as needed
|
82 |
+
if courses:
|
83 |
+
for course in courses:
|
84 |
+
print(f"Title: {course['title']}, Description: {course['description']}")
|
85 |
+
else:
|
86 |
+
print("No courses found!")
|
87 |
+
|
88 |
+
# Step 2: Convert Data to DataFrame
|
89 |
+
df = pd.DataFrame(courses)
|
90 |
+
|
91 |
+
# Check if DataFrame is empty
|
92 |
+
if df.empty:
|
93 |
+
print("DataFrame is empty. No valid data was scraped.")
|
94 |
+
exit()
|
95 |
+
|
96 |
+
# Combine title and description for embeddings
|
97 |
+
df["combined_text"] = df["title"] + " " + df["description"]
|
98 |
+
|
99 |
+
# Step 3: Generate Embeddings Using SentenceTransformers
|
100 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
101 |
+
course_embeddings = embedding_model.encode(df["combined_text"].tolist(), show_progress_bar=True)
|
102 |
+
|
103 |
+
# Step 4: Store Embeddings in FAISS Vector Store
|
104 |
documents = [
|
105 |
Document(
|
106 |
page_content=text,
|
|
|
111 |
|
112 |
vector_store = FAISS.from_documents(documents, embedding_model)
|
113 |
|
114 |
+
# Step 5: Build the Smart Search System
|
|
|
|
|
|
|
|
|
|
|
115 |
retriever = vector_store.as_retriever()
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
# Mock QA Chain
|
118 |
+
def mock_qa_chain(question):
|
119 |
+
docs = retriever.get_relevant_documents(question)
|
120 |
+
context = "\n".join([doc.page_content for doc in docs])
|
121 |
+
return f"Mock Answer based on context:\n{context}\n\nSources: {', '.join([doc.metadata['source'] for doc in docs])}"
|
122 |
+
|
123 |
+
# Step 6: Gradio Interface Function
|
124 |
def smart_search(query):
|
125 |
+
return mock_qa_chain(query)
|
|
|
126 |
|
127 |
+
# Step 7: Deploying with Gradio
|
128 |
iface = gr.Interface(
|
129 |
fn=smart_search,
|
130 |
inputs=gr.Textbox(label="Ask a Question", placeholder="Enter your question here..."),
|
|
|
134 |
|
135 |
if __name__ == "__main__":
|
136 |
iface.launch()
|
|