from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments # Load dataset dataset = load_dataset('json', data_files='flirty_dataset.json') # Tokenizer and model model_name = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Tokenize dataset def tokenize_function(examples): return tokenizer(examples['prompt'], truncation=True, padding="max_length", max_length=128) tokenized_dataset = dataset.map(tokenize_function, batched=True) # Training arguments training_args = TrainingArguments( output_dir="./fine_tuned_gpt2", evaluation_strategy="epoch", save_strategy="epoch", learning_rate=5e-5, num_train_epochs=3, per_device_train_batch_size=8, save_total_limit=2, logging_dir="./logs", logging_steps=10, fp16=True ) # Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["validation"], tokenizer=tokenizer ) # Train the model trainer.train() # Save model trainer.save_model("./fine_tuned_gpt2") tokenizer.save_pretrained("./fine_tuned_gpt2")