import os import sys import random import torch from pathlib import Path import numpy as np import gradio as gr from huggingface_hub import hf_hub_download import spaces from typing import Union, Sequence, Mapping, Any import logging from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes, SaveImage # <-- Node SaveImage from comfy import model_management import folder_paths # 1. Configurar logging para debug logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # 2. Configuração de Caminhos e Imports current_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(current_dir) # 3. Configuração de Diretórios BASE_DIR = os.path.dirname(os.path.realpath(__file__)) output_dir = os.path.join(BASE_DIR, "output") models_dir = os.path.join(BASE_DIR, "models") os.makedirs(output_dir, exist_ok=True) os.makedirs(models_dir, exist_ok=True) folder_paths.set_output_directory(output_dir) # 4. Configurar caminhos dos modelos e verificar estrutura MODEL_FOLDERS = ["style_models", "text_encoders", "vae", "unet", "clip_vision"] for model_folder in MODEL_FOLDERS: folder_path = os.path.join(models_dir, model_folder) os.makedirs(folder_path, exist_ok=True) folder_paths.add_model_folder_path(model_folder, folder_path) logger.info(f"Pasta de modelo configurada: {model_folder}") # 5. Diagnóstico CUDA logger.info(f"Python version: {sys.version}") logger.info(f"Torch version: {torch.__version__}") logger.info(f"CUDA disponível: {torch.cuda.is_available()}") logger.info(f"Quantidade de GPUs: {torch.cuda.device_count()}") if torch.cuda.is_available(): logger.info(f"GPU atual: {torch.cuda.get_device_name(0)}") # 6. Inicialização do ComfyUI logger.info("Inicializando ComfyUI...") try: init_extra_nodes() except Exception as e: logger.warning(f"Aviso na inicialização de nós extras: {str(e)}") logger.info("Continuando mesmo com avisos nos nós extras...") # 7. Helper Functions def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: try: return obj[index] except KeyError: return obj["result"][index] def verify_file_exists(folder: str, filename: str) -> bool: file_path = os.path.join(models_dir, folder, filename) exists = os.path.exists(file_path) if not exists: logger.error(f"Arquivo não encontrado: {file_path}") return exists # 8. Download de Modelos logger.info("Baixando modelos necessários...") try: hf_hub_download( repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir=os.path.join(models_dir, "style_models") ) hf_hub_download( repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir=os.path.join(models_dir, "text_encoders") ) hf_hub_download( repo_id="zer0int/CLIP-GmP-ViT-L-14", filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", local_dir=os.path.join(models_dir, "text_encoders") ) hf_hub_download( repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir=os.path.join(models_dir, "vae") ) hf_hub_download( repo_id="black-forest-labs/FLUX.1-dev", filename="flux1-dev.safetensors", local_dir=os.path.join(models_dir, "unet") ) hf_hub_download( repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir=os.path.join(models_dir, "clip_vision") ) except Exception as e: logger.error(f"Erro ao baixar modelos: {str(e)}") raise # 9. Inicialização dos Modelos logger.info("Inicializando modelos...") try: with torch.no_grad(): # CLIP logger.info("Carregando CLIP...") dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() CLIP_MODEL = dualcliploader.load_clip( clip_name1="t5xxl_fp16.safetensors", clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", type="flux" ) if CLIP_MODEL is None: raise ValueError("Falha ao carregar CLIP model") # CLIP Vision logger.info("Carregando CLIP Vision...") clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]() CLIP_VISION = clipvisionloader.load_clip( clip_name="sigclip_vision_patch14_384.safetensors" ) if CLIP_VISION is None: raise ValueError("Falha ao carregar CLIP Vision model") # Style Model logger.info("Carregando Style Model...") stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() STYLE_MODEL = stylemodelloader.load_style_model( style_model_name="flux1-redux-dev.safetensors" ) if STYLE_MODEL is None: raise ValueError("Falha ao carregar Style Model") # VAE logger.info("Carregando VAE...") vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() VAE_MODEL = vaeloader.load_vae( vae_name="ae.safetensors" ) if VAE_MODEL is None: raise ValueError("Falha ao carregar VAE model") # UNET logger.info("Carregando UNET...") unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]() UNET_MODEL = unetloader.load_unet( unet_name="flux1-dev.safetensors", weight_dtype="fp8_e4m3fn" # ajuste se preciso ) if UNET_MODEL is None: raise ValueError("Falha ao carregar UNET model") logger.info("Carregando modelos na GPU...") model_loaders = [CLIP_MODEL, VAE_MODEL, CLIP_VISION, UNET_MODEL] model_management.load_models_gpu([ loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders ]) logger.info("Modelos carregados com sucesso") except Exception as e: logger.error(f"Erro ao inicializar modelos: {str(e)}") raise # 10. Função de Geração @spaces.GPU def generate_image( prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps, progress=gr.Progress(track_tqdm=True) ): try: with torch.no_grad(): logger.info(f"Iniciando geração com prompt: {prompt}") # Codificar texto cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() encoded_text = cliptextencode.encode( text=prompt, clip=CLIP_MODEL[0] ) # Carregar e processar imagem loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() loaded_image = loadimage.load_image(image=input_image) if loaded_image is None: raise ValueError("Erro ao carregar a imagem de entrada") logger.info("Imagem carregada com sucesso") # Flux Guidance fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() flux_guidance = fluxguidance.append( guidance=guidance, conditioning=encoded_text[0] ) # Redux Advanced reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]() redux_result = reduxadvanced.apply_stylemodel( downsampling_factor=downsampling_factor, downsampling_function="area", mode="keep aspect ratio", weight=weight, conditioning=flux_guidance[0], style_model=STYLE_MODEL[0], clip_vision=CLIP_VISION[0], image=loaded_image[0] ) # Empty Latent emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() empty_latent = emptylatentimage.generate( width=width, height=height, batch_size=batch_size ) # KSampler logger.info("Iniciando sampling...") ksampler = NODE_CLASS_MAPPINGS["KSampler"]() sampled = ksampler.sample( seed=seed, steps=steps, cfg=1, sampler_name="euler", scheduler="simple", denoise=1, model=UNET_MODEL[0], positive=redux_result[0], negative=flux_guidance[0], latent_image=empty_latent[0] ) # VAE Decode logger.info("Decodificando imagem...") vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() decoded = vaedecode.decode( samples=sampled[0], vae=VAE_MODEL[0] ) # Salvar Imagem logger.info("Salvando imagem via node SaveImage...") decoded_tensor = decoded[0] saveimage_node = NODE_CLASS_MAPPINGS["SaveImage"]() result_dict = saveimage_node.save_images( filename_prefix="Flux_", images=decoded_tensor ) saved_path = os.path.join(output_dir, result_dict["ui"]["images"][0]["filename"]) logger.info(f"Imagem salva em: {saved_path}") return saved_path except Exception as e: logger.error(f"Erro ao gerar imagem: {str(e)}") return None # 10. Interface Gradio with gr.Blocks() as app: gr.Markdown("# FLUX Redux Image Generator") with gr.Row(): with gr.Column(): prompt_input = gr.Textbox( label="Prompt", placeholder="Enter your prompt here...", lines=5 ) input_image = gr.Image( label="Input Image", type="filepath" ) with gr.Row(): with gr.Column(): lora_weight = gr.Slider( minimum=0, maximum=2, step=0.1, value=0.6, label="LoRA Weight" ) guidance = gr.Slider( minimum=0, maximum=20, step=0.1, value=3.5, label="Guidance" ) downsampling_factor = gr.Slider( minimum=1, maximum=8, step=1, value=3, label="Downsampling Factor" ) weight = gr.Slider( minimum=0, maximum=2, step=0.1, value=1.0, label="Model Weight" ) with gr.Column(): seed = gr.Number( value=random.randint(1, 2**64), label="Seed", precision=0 ) width = gr.Number( value=1024, label="Width", precision=0 ) height = gr.Number( value=1024, label="Height", precision=0 ) batch_size = gr.Number( value=1, label="Batch Size", precision=0 ) steps = gr.Number( value=20, label="Steps", precision=0 ) generate_btn = gr.Button("Generate Image") with gr.Column(): output_image = gr.Image(label="Generated Image", type="filepath") generate_btn.click( fn=generate_image, inputs=[ prompt_input, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps ], outputs=[output_image] ) if __name__ == "__main__": app.launch()