Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
import random | |
import torch | |
from pathlib import Path | |
from PIL import Image | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
import spaces | |
from typing import Union, Sequence, Mapping, Any | |
# Configuração inicial e diagnóstico CUDA | |
print("Python version:", sys.version) | |
print("Torch version:", torch.__version__) | |
print("CUDA disponível:", torch.cuda.is_available()) | |
print("Quantidade de GPUs:", torch.cuda.device_count()) | |
if torch.cuda.is_available(): | |
print("GPU atual:", torch.cuda.get_device_name(0)) | |
# Adicionar o caminho da pasta ComfyUI ao sys.path | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
comfyui_path = os.path.join(current_dir, "ComfyUI") | |
sys.path.append(comfyui_path) | |
# Importar ComfyUI components | |
from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes | |
from comfy import model_management | |
import folder_paths | |
# Configuração de diretórios | |
BASE_DIR = os.path.dirname(os.path.realpath(__file__)) | |
output_dir = os.path.join(BASE_DIR, "output") | |
os.makedirs(output_dir, exist_ok=True) | |
folder_paths.set_output_directory(output_dir) | |
# Inicializar nós extras | |
print("Inicializando nós extras...") | |
init_extra_nodes() | |
# Helper function | |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
try: | |
return obj[index] | |
except KeyError: | |
return obj["result"][index] | |
# Baixar modelos necessários | |
def download_models(): | |
print("Baixando modelos...") | |
models = [ | |
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "models/style_models"), | |
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "models/text_encoders"), | |
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "models/text_encoders"), | |
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "models/vae"), | |
("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "models/diffusion_models"), # Corrigido aqui | |
("google/siglip-so400m-patch14-384", "model.safetensors", "models/clip_vision"), | |
("nftnik/NFTNIK-FLUX.1-dev-LoRA", "NFTNIK_FLUX.1[dev]_LoRA.safetensors", "models/lora") | |
] | |
for repo_id, filename, local_dir in models: | |
try: | |
os.makedirs(local_dir, exist_ok=True) | |
print(f"Baixando {filename} de {repo_id}...") | |
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) | |
except Exception as e: | |
print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}") | |
# Continue mesmo se um download falhar | |
continue | |
# Download models antes de inicializar | |
download_models() | |
# Inicializar modelos | |
print("Inicializando modelos...") | |
with torch.inference_mode(): | |
# Initialize nodes | |
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() | |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
dualcliploader_357 = dualcliploader.load_clip( | |
clip_name1="models/text_encoders/t5xxl_fp16.safetensors", | |
clip_name2="models/text_encoders/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", | |
type="flux", | |
) | |
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() | |
stylemodelloader_441 = stylemodelloader.load_style_model( | |
style_model_name="models/style_models/flux1-redux-dev.safetensors" | |
) | |
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
vaeloader_359 = vaeloader.load_vae(vae_name="models/vae/ae.safetensors") | |
# Carregar modelos na GPU | |
model_loaders = [dualcliploader_357, vaeloader_359, stylemodelloader_441] | |
valid_models = [ | |
getattr(loader[0], 'patcher', loader[0]) | |
for loader in model_loaders | |
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict) | |
] | |
model_management.load_models_gpu(valid_models) | |
def generate_image(prompt, input_image, lora_weight, progress=gr.Progress(track_tqdm=True)): | |
"""Função principal de geração com monitoramento de progresso""" | |
try: | |
with torch.inference_mode(): | |
# Codificar texto | |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
encoded_text = cliptextencode.encode( | |
text=prompt, | |
clip=get_value_at_index(dualcliploader_357, 0) | |
) | |
# Carregar LoRA | |
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() | |
lora_model = loraloadermodelonly.load_lora_model_only( | |
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors", | |
strength_model=lora_weight, | |
model=get_value_at_index(stylemodelloader_441, 0) | |
) | |
# Processar imagem | |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
loaded_image = loadimage.load_image(image=input_image) | |
# Decodificar | |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
decoded = vaedecode.decode( | |
samples=get_value_at_index(lora_model, 0), | |
vae=get_value_at_index(vaeloader_359, 0) | |
) | |
# Salvar imagem | |
temp_filename = f"Flux_{random.randint(0, 99999)}.png" | |
temp_path = os.path.join(output_dir, temp_filename) | |
Image.fromarray((get_value_at_index(decoded, 0) * 255).astype("uint8")).save(temp_path) | |
return temp_path | |
except Exception as e: | |
print(f"Erro ao gerar imagem: {str(e)}") | |
return None | |
# Interface Gradio | |
with gr.Blocks() as app: | |
gr.Markdown("# Gerador de Imagens FLUX Redux") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5) | |
input_image = gr.Image(label="Imagem de Entrada", type="filepath") | |
lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA") | |
generate_btn = gr.Button("Gerar Imagem") | |
with gr.Column(): | |
output_image = gr.Image(label="Imagem Gerada", type="filepath") | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[prompt_input, input_image, lora_weight], | |
outputs=[output_image] | |
) | |
if __name__ == "__main__": | |
app.launch() |