import gradio as gr import base64 import os from openai import OpenAI import json import fitz from PIL import Image import io from settings_mgr import generate_download_settings_js, generate_upload_settings_js from chat_export import import_history, get_export_js from doc2json import process_docx from code_exec import eval_restricted_script dump_controls = False log_to_console = False temp_files = [] def encode_image(image_data): """Generates a prefix for image base64 data in the required format for the four known image formats: png, jpeg, gif, and webp. Args: image_data: The image data, encoded in base64. Returns: A string containing the prefix. """ # Get the first few bytes of the image data. magic_number = image_data[:4] # Check the magic number to determine the image type. if magic_number.startswith(b'\x89PNG'): image_type = 'png' elif magic_number.startswith(b'\xFF\xD8'): image_type = 'jpeg' elif magic_number.startswith(b'GIF89a'): image_type = 'gif' elif magic_number.startswith(b'RIFF'): if image_data[8:12] == b'WEBP': image_type = 'webp' else: # Unknown image type. raise Exception("Unknown image type") else: # Unknown image type. raise Exception("Unknown image type") return f"data:image/{image_type};base64,{base64.b64encode(image_data).decode('utf-8')}" def process_pdf_img(pdf_fn: str): pdf = fitz.open(pdf_fn) message_parts = [] for page in pdf.pages(): # Create a transformation matrix for rendering at the calculated scale mat = fitz.Matrix(0.6, 0.6) # Render the page to a pixmap pix = page.get_pixmap(matrix=mat, alpha=False) # Convert pixmap to PIL Image img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) # Convert PIL Image to bytes img_byte_arr = io.BytesIO() img.save(img_byte_arr, format='PNG') img_byte_arr = img_byte_arr.getvalue() # Encode image to base64 base64_encoded = base64.b64encode(img_byte_arr).decode('utf-8') # Construct the data URL image_url = f"data:image/png;base64,{base64_encoded}" # Append the message part message_parts.append({ "type": "text", "text": f"Page {page.number} of file '{pdf_fn}'" }) message_parts.append({ "type": "image_url", "image_url": { "url": image_url, "detail": "high" } }) pdf.close() return message_parts def encode_file(fn: str) -> list: user_msg_parts = [] if fn.endswith(".docx"): user_msg_parts.append({"type": "text", "text": process_docx(fn)}) elif fn.endswith(".pdf"): user_msg_parts.extend(process_pdf_img(fn)) else: with open(fn, mode="rb") as f: content = f.read() isImage = False if isinstance(content, bytes): try: # try to add as image content = encode_image(content) isImage = True except: # not an image, try text content = content.decode('utf-8', 'replace') else: content = str(content) if isImage: user_msg_parts.append({"type": "image_url", "image_url":{"url": content}}) else: fn = os.path.basename(fn) user_msg_parts.append({"type": "text", "text": f"```{fn}\n{content}\n```"}) return user_msg_parts def undo(history): history.pop() return history def dump(history): return str(history) def load_settings(): # Dummy Python function, actual loading is done in JS pass def save_settings(acc, sec, prompt, temp, tokens, model): # Dummy Python function, actual saving is done in JS pass def process_values_js(): return """ () => { return ["oai_key", "system_prompt", "seed"]; } """ def bot(message, history, oai_key, system_prompt, seed, temperature, max_tokens, model, python_use): try: client = OpenAI( api_key=oai_key ) if model == "whisper": result = "" whisper_prompt = system_prompt for msg in history: content = msg["content"] if msg["role"] == "user": if type(content) is tuple: pass else: whisper_prompt += f"\n{content}" if msg["role"] == "assistant": whisper_prompt += f"\n{content}" if message["text"]: whisper_prompt += message["text"] if message.files: for file in message.files: audio_fn = os.path.basename(file.path) with open(file.path, "rb") as f: transcription = client.audio.transcriptions.create( model="whisper-1", prompt=whisper_prompt, file=f, response_format="text" ) whisper_prompt += f"\n{transcription}" result += f"\n``` transcript {audio_fn}\n {transcription}\n```" yield result elif model == "dall-e-3": response = client.images.generate( model=model, prompt=message["text"], size="1792x1024", quality="hd", n=1, ) yield gr.Image(response.data[0].url) else: seed_i = None if seed: seed_i = int(seed) tools = None if not python_use else [ { "type": "function", "function": { "name": "eval_python", "description": "Evaluate a simple script written in a conservative, restricted subset of Python." "Note: Augmented assignments, in-place operations (e.g., +=, -=), lambdas (e.g. list comprehensions) are not supported. " "Use regular assignments and operations instead. Only 'import math' is allowed. " "Returns: unquoted results without HTML encoding.", "parameters": { "type": "object", "properties": { "python_source_code": { "type": "string", "description": "The Python script that will run in a RestrictedPython context. " "Avoid using augmented assignments or in-place operations (+=, -=, etc.), as well as lambdas (e.g. list comprehensions). " "Use regular assignments and operations instead. Only 'import math' is allowed. Results need to be reported through print()." } }, "required": ["python_source_code"] } } } ] if log_to_console: print(f"bot history: {str(history)}") history_openai_format = [] user_msg_parts = [] if system_prompt: if not model.startswith("o"): role = "system" else: role = "developer" if not system_prompt.startswith("Formatting re-enabled"): system_prompt = "Formatting re-enabled\n" + system_prompt history_openai_format.append({"role": role, "content": system_prompt}) for msg in history: role = msg["role"] content = msg["content"] if role == "user": if isinstance(content, gr.File) or isinstance(content, gr.Image): user_msg_parts.extend(encode_file(content.value['path'])) elif isinstance(content, tuple): user_msg_parts.extend(encode_file(content[0])) else: user_msg_parts.append({"type": "text", "text": content}) if role == "assistant": if user_msg_parts: history_openai_format.append({"role": "user", "content": user_msg_parts}) user_msg_parts = [] history_openai_format.append({"role": "assistant", "content": content}) if message["text"]: user_msg_parts.append({"type": "text", "text": message["text"]}) if message["files"]: for file in message["files"]: user_msg_parts.extend(encode_file(file)) history_openai_format.append({"role": "user", "content": user_msg_parts}) user_msg_parts = [] if log_to_console: print(f"br_prompt: {str(history_openai_format)}") if model in ["o1", "o1-high", "o1-2024-12-17", "o3-mini", "o3-mini-high"]: # reasoning effort high = False if model == "o1-high": model = "o1" high = True elif model == "o3-mini-high": model = "o3-mini" high = True response = client.chat.completions.create( model=model, messages= history_openai_format, seed=seed_i, reasoning_effort="high" if high else "medium", **({"max_completion_tokens": max_tokens} if max_tokens > 0 else {}) ) yield response.choices[0].message.content if log_to_console: print(f"usage: {response.usage}") else: whole_response = "" while True: response = client.chat.completions.create( model=model, messages= history_openai_format, temperature=temperature, seed=seed_i, max_tokens=max_tokens, stream=True, stream_options={"include_usage": True}, **{"tools": tools} if python_use else {}, tool_choice = "auto" if python_use else None ) # Accumulators for partial model responses tool_name_accum = None tool_args_accum = "" tool_call_id = None # process for chunk in response: if chunk.choices: txt = "" for choice in chunk.choices: delta = choice.delta if not delta: continue cont = delta.content if cont: txt += cont if delta.tool_calls: for tc in delta.tool_calls: if tc.function.name: tool_name_accum = tc.function.name if tc.function.arguments: tool_args_accum += tc.function.arguments if tc.id: tool_call_id = tc.id finish_reason = choice.finish_reason if finish_reason: if finish_reason == "tool_calls": try: parsed_args = json.loads(tool_args_accum) tool_script = parsed_args.get("python_source_code", "") whole_response += f"\n``` script\n{tool_script}\n```\n" yield whole_response tool_result = eval_restricted_script(tool_script) whole_response += f"\n``` result\n{tool_result if not tool_result['success'] else tool_result['prints']}\n```\n" yield whole_response history_openai_format.extend([ { "role": "assistant", "content": txt, "tool_calls": [ { "id": tool_call_id, "type": "function", "function": { "name": tool_name_accum, "arguments": json.dumps(parsed_args) } } ] }, { "role": "tool", "tool_call_id": tool_call_id, "name": tool_name_accum, "content": json.dumps(tool_result) } ]) except Exception as e: history_openai_format.extend([{ "role": "tool", "tool_call_id": tool_call_id, "name": tool_name_accum, "content": [ { "toolResult": { "content": [{"text": e.args[0]}], "status": 'error' } } ] }]) whole_response += f"\n``` error\n{e.args[0]}\n```\n" yield whole_response else: return else: whole_response += txt yield whole_response if chunk.usage and log_to_console: print(f"usage: {chunk.usage}") if log_to_console: print(f"br_result: {str(history)}") except Exception as e: raise gr.Error(f"Error: {str(e)}") def import_history_guarded(oai_key, history, file): # check credentials first try: client = OpenAI(api_key=oai_key) client.models.retrieve("gpt-4o") except Exception as e: raise gr.Error(f"OpenAI login error: {str(e)}") # actual import return import_history(history, file) with gr.Blocks(delete_cache=(86400, 86400)) as demo: gr.Markdown("# OAI Chat (Nils' Version™️)") with gr.Accordion("Startup"): gr.Markdown("""Use of this interface permitted under the terms and conditions of the [MIT license](https://github.com/ndurner/oai_chat/blob/main/LICENSE). Third party terms and conditions apply, particularly those of the LLM vendor (OpenAI) and hosting provider (Hugging Face). This app and the AI models may make mistakes, so verify any outputs.""") oai_key = gr.Textbox(label="OpenAI API Key", elem_id="oai_key") model = gr.Dropdown(label="Model", value="gpt-4-turbo", allow_custom_value=True, elem_id="model", choices=["gpt-4o", "gpt-4-turbo", "o1-high", "o1-mini", "o1", "o3-mini-high", "o3-mini", "o1-preview", "chatgpt-4o-latest", "gpt-4o-2024-05-13", "gpt-4o-2024-11-20", "gpt-4o-mini", "gpt-4", "gpt-4-vision-preview", "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-1106", "whisper", "dall-e-3"]) system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System/Developer Prompt", lines=3, max_lines=250, elem_id="system_prompt") seed = gr.Textbox(label="Seed", elem_id="seed") temp = gr.Slider(0, 2, label="Temperature", elem_id="temp", value=1) max_tokens = gr.Slider(0, 16384, label="Max. Tokens", elem_id="max_tokens", value=800) python_use = gr.Checkbox(label="Python Use", value=False) save_button = gr.Button("Save Settings") load_button = gr.Button("Load Settings") dl_settings_button = gr.Button("Download Settings") ul_settings_button = gr.Button("Upload Settings") load_button.click(load_settings, js=""" () => { let elems = ['#oai_key textarea', '#system_prompt textarea', '#seed textarea', '#temp input', '#max_tokens input', '#model']; elems.forEach(elem => { let item = document.querySelector(elem); let event = new InputEvent('input', { bubbles: true }); item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || ''; item.dispatchEvent(event); }); } """) save_button.click(save_settings, [oai_key, system_prompt, seed, temp, max_tokens, model], js=""" (oai, sys, seed, temp, ntok, model) => { localStorage.setItem('oai_key', oai); localStorage.setItem('system_prompt', sys); localStorage.setItem('seed', seed); localStorage.setItem('temp', document.querySelector('#temp input').value); localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value); localStorage.setItem('model', model); } """) control_ids = [('oai_key', '#oai_key textarea'), ('system_prompt', '#system_prompt textarea'), ('seed', '#seed textarea'), ('temp', '#temp input'), ('max_tokens', '#max_tokens input'), ('model', '#model')] controls = [oai_key, system_prompt, seed, temp, max_tokens, model, python_use] dl_settings_button.click(None, controls, js=generate_download_settings_js("oai_chat_settings.bin", control_ids)) ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids)) chat = gr.ChatInterface(fn=bot, multimodal=True, additional_inputs=controls, autofocus = False, type = "messages") chat.textbox.file_count = "multiple" chat.textbox.max_plain_text_length = 2**31 chatbot = chat.chatbot chatbot.show_copy_button = True chatbot.height = 450 if dump_controls: with gr.Row(): dmp_btn = gr.Button("Dump") txt_dmp = gr.Textbox("Dump") dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp]) with gr.Accordion("Import/Export", open = False): import_button = gr.UploadButton("History Import") export_button = gr.Button("History Export") export_button.click(lambda: None, [chatbot, system_prompt], js=get_export_js()) dl_button = gr.Button("File download") dl_button.click(lambda: None, [chatbot], js=""" (chat_history) => { const languageToExt = { 'python': 'py', 'javascript': 'js', 'typescript': 'ts', 'csharp': 'cs', 'ruby': 'rb', 'shell': 'sh', 'bash': 'sh', 'markdown': 'md', 'yaml': 'yml', 'rust': 'rs', 'golang': 'go', 'kotlin': 'kt' }; const contentRegex = /```(?:([^\\n]+)?\\n)?([\\s\\S]*?)```/; const match = contentRegex.exec(chat_history[chat_history.length - 1][1]); if (match && match[2]) { const specifier = match[1] ? match[1].trim() : ''; const content = match[2]; let filename = 'download'; let fileExtension = 'txt'; // default if (specifier) { if (specifier.includes('.')) { // If specifier contains a dot, treat it as a filename const parts = specifier.split('.'); filename = parts[0]; fileExtension = parts[1]; } else { // Use mapping if exists, otherwise use specifier itself const langLower = specifier.toLowerCase(); fileExtension = languageToExt[langLower] || langLower; filename = 'code'; } } const blob = new Blob([content], {type: 'text/plain'}); const url = URL.createObjectURL(blob); const a = document.createElement('a'); a.href = url; a.download = `${filename}.${fileExtension}`; document.body.appendChild(a); a.click(); document.body.removeChild(a); URL.revokeObjectURL(url); } } """) import_button.upload(import_history_guarded, inputs=[oai_key, chatbot, import_button], outputs=[chatbot, system_prompt]) demo.unload(lambda: [os.remove(file) for file in temp_files]) demo.queue(default_concurrency_limit = None).launch()