update
Browse files
app.py
CHANGED
@@ -90,8 +90,9 @@ def convert_to_dataframe(analyzed_articles):
|
|
90 |
with gr.Blocks() as iface:
|
91 |
gr.Markdown("# Trading Asset Sentiment Analysis")
|
92 |
gr.Markdown("Analyze the sentiment of recent articles related to a trading asset.")
|
93 |
-
gr.Markdown(
|
94 |
-
|
|
|
95 |
gr.Markdown("### π NIM: 21533401 | Kelas: TI 7A")
|
96 |
gr.Markdown(
|
97 |
"""
|
@@ -112,23 +113,72 @@ with gr.Blocks() as iface:
|
|
112 |
analyze_button = gr.Button("Analyze Sentiment", size="sm")
|
113 |
|
114 |
gr.Examples(
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
)
|
133 |
|
134 |
with gr.Row():
|
|
|
90 |
with gr.Blocks() as iface:
|
91 |
gr.Markdown("# Trading Asset Sentiment Analysis")
|
92 |
gr.Markdown("Analyze the sentiment of recent articles related to a trading asset.")
|
93 |
+
gr.Markdown(
|
94 |
+
f"### π¨βπ» Author: [**Nanda Safiq Alfiansyah**](https://ndav.my.id)"
|
95 |
+
)
|
96 |
gr.Markdown("### π NIM: 21533401 | Kelas: TI 7A")
|
97 |
gr.Markdown(
|
98 |
"""
|
|
|
113 |
analyze_button = gr.Button("Analyze Sentiment", size="sm")
|
114 |
|
115 |
gr.Examples(
|
116 |
+
examples=[
|
117 |
+
# Cryptocurrencies
|
118 |
+
"Bitcoin",
|
119 |
+
"Ethereum",
|
120 |
+
"Ripple",
|
121 |
+
"Litecoin",
|
122 |
+
"Binance Coin",
|
123 |
+
"Cardano",
|
124 |
+
"Polkadot",
|
125 |
+
"Solana",
|
126 |
+
|
127 |
+
# Tech stocks
|
128 |
+
"Tesla",
|
129 |
+
"Apple",
|
130 |
+
"Amazon",
|
131 |
+
"Microsoft",
|
132 |
+
"Meta",
|
133 |
+
"Google",
|
134 |
+
"Netflix",
|
135 |
+
"NVIDIA",
|
136 |
+
|
137 |
+
# Commodities
|
138 |
+
"Gold",
|
139 |
+
"Silver",
|
140 |
+
"Platinum",
|
141 |
+
"Crude Oil",
|
142 |
+
"Natural Gas",
|
143 |
+
"Copper",
|
144 |
+
|
145 |
+
# Indices
|
146 |
+
"S&P 500",
|
147 |
+
"Dow Jones",
|
148 |
+
"Nasdaq 100",
|
149 |
+
"FTSE 100",
|
150 |
+
"DAX 30",
|
151 |
+
"Nikkei 225",
|
152 |
+
"Hang Seng",
|
153 |
+
|
154 |
+
# Forex pairs
|
155 |
+
"USD/EUR",
|
156 |
+
"USD/JPY",
|
157 |
+
"GBP/USD",
|
158 |
+
"AUD/USD",
|
159 |
+
"USD/CAD",
|
160 |
+
"USD/CHF",
|
161 |
+
|
162 |
+
# Global companies
|
163 |
+
"Alibaba",
|
164 |
+
"Samsung",
|
165 |
+
"Toyota",
|
166 |
+
"Sony",
|
167 |
+
"Roche",
|
168 |
+
"Volkswagen",
|
169 |
+
"Tencent",
|
170 |
+
"HSBC",
|
171 |
+
|
172 |
+
# Other popular assets
|
173 |
+
"Coca-Cola",
|
174 |
+
"PepsiCo",
|
175 |
+
"McDonald's",
|
176 |
+
"Procter & Gamble",
|
177 |
+
"Johnson & Johnson",
|
178 |
+
"Intel",
|
179 |
+
"IBM",
|
180 |
+
],
|
181 |
+
inputs=input_asset,
|
182 |
)
|
183 |
|
184 |
with gr.Row():
|