# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...extras.constants import MOD_SUPPORTED_MODELS if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedModel from ...hparams import ModelArguments def load_mod_pretrained_model(**init_kwargs) -> "PreTrainedModel": from MoD import AutoMoDModelForCausalLM return AutoMoDModelForCausalLM.from_pretrained(**init_kwargs) def convert_pretrained_model_to_mod( model: "PreTrainedModel", config: "PretrainedConfig", model_args: "ModelArguments" ) -> "PreTrainedModel": from MoD import apply_mod_to_hf if getattr(config, "model_type", None) not in MOD_SUPPORTED_MODELS: raise ValueError("Current model is not supported by mixture-of-depth.") model = apply_mod_to_hf(model) model = model.to(model_args.compute_dtype) return model