|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import TYPE_CHECKING, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers.models.llama.modeling_llama import ( |
|
Cache, |
|
LlamaAttention, |
|
LlamaFlashAttention2, |
|
LlamaSdpaAttention, |
|
apply_rotary_pos_emb, |
|
repeat_kv, |
|
) |
|
from transformers.utils import logging |
|
from transformers.utils.versions import require_version |
|
|
|
from ...extras.constants import SUPPORTED_CLASS_FOR_S2ATTN |
|
from ...extras.logging import get_logger |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PretrainedConfig |
|
|
|
from ...hparams import ModelArguments |
|
|
|
|
|
transformers_logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
def llama_attention_forward( |
|
self: "LlamaAttention", |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional["Cache"] = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states: "torch.Tensor" = self.q_proj(hidden_states) |
|
key_states: "torch.Tensor" = self.k_proj(hidden_states) |
|
value_states: "torch.Tensor" = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
past_key_value = getattr(self, "past_key_value", past_key_value) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: |
|
groupsz = int(q_len * getattr(self.config, "group_size_ratio")) |
|
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) |
|
num_groups = q_len // groupsz |
|
|
|
def shift(state: "torch.Tensor") -> "torch.Tensor": |
|
state = state.transpose(1, 2) |
|
state = torch.cat( |
|
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), |
|
dim=2, |
|
) |
|
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: |
|
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) |
|
attn_output = torch.cat( |
|
( |
|
attn_output[:, :, : self.num_heads // 2], |
|
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), |
|
), |
|
dim=2, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
|
def llama_flash_attention_2_forward( |
|
self: "LlamaFlashAttention2", |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional["Cache"] = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states: "torch.Tensor" = self.q_proj(hidden_states) |
|
key_states: "torch.Tensor" = self.k_proj(hidden_states) |
|
value_states: "torch.Tensor" = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
past_key_value = getattr(self, "past_key_value", past_key_value) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0 |
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
transformers_logger.warning_once("The input hidden states seems to be silently casted in float32.") |
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: |
|
groupsz = int(q_len * getattr(self.config, "group_size_ratio")) |
|
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) |
|
num_groups = q_len // groupsz |
|
|
|
def shift(state: "torch.Tensor") -> "torch.Tensor": |
|
state = torch.cat( |
|
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), |
|
dim=2, |
|
) |
|
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim) |
|
|
|
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, :groupsz].repeat(num_groups, 1) |
|
|
|
attn_output: "torch.Tensor" = self._flash_attention_forward( |
|
query_states, key_states, value_states, attention_mask, query_states.size(1), dropout=dropout_rate |
|
) |
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: |
|
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) |
|
attn_output = torch.cat( |
|
( |
|
attn_output[:, :, : self.num_heads // 2], |
|
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), |
|
), |
|
dim=2, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
|
def llama_sdpa_attention_forward( |
|
self: "LlamaSdpaAttention", |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional["Cache"] = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
transformers_logger.warning_once( |
|
"SDPA does not support `output_attentions=True`. Falling back to the vanilla attention" |
|
) |
|
return llama_attention_forward( |
|
self, |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states: "torch.Tensor" = self.q_proj(hidden_states) |
|
key_states: "torch.Tensor" = self.k_proj(hidden_states) |
|
value_states: "torch.Tensor" = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: |
|
groupsz = int(q_len * getattr(self.config, "group_size_ratio")) |
|
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) |
|
num_groups = q_len // groupsz |
|
|
|
def shift(state: "torch.Tensor") -> "torch.Tensor": |
|
state = state.transpose(1, 2) |
|
state = torch.cat( |
|
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), |
|
dim=2, |
|
) |
|
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
if query_states.device.type == "cuda" and causal_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False |
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: |
|
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) |
|
attn_output = torch.cat( |
|
( |
|
attn_output[:, :, : self.num_heads // 2], |
|
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), |
|
), |
|
dim=2, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
def _apply_llama_patch() -> None: |
|
require_version("transformers>=4.41.2,<=4.42.3", "To fix: pip install transformers>=4.41.2,<=4.42.3") |
|
LlamaAttention.forward = llama_attention_forward |
|
LlamaFlashAttention2.forward = llama_flash_attention_2_forward |
|
LlamaSdpaAttention.forward = llama_sdpa_attention_forward |
|
|
|
|
|
def configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: |
|
if not is_trainable or not model_args.shift_attn: |
|
return |
|
|
|
logger = get_logger(__name__) |
|
|
|
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN: |
|
setattr(config, "group_size_ratio", 0.25) |
|
_apply_llama_patch() |
|
logger.info("Using shift short attention with group_size_ratio=1/4.") |
|
else: |
|
logger.warning("Current model does not support shift short attention.") |
|
|