|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import asdict, dataclass, field |
|
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union |
|
|
|
from typing_extensions import Self |
|
|
|
|
|
if TYPE_CHECKING: |
|
import torch |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
r""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer. |
|
""" |
|
|
|
|
|
graph_decoder_path: str = field( |
|
metadata={ |
|
"help": "Path to the model weight for graph decoder model " |
|
}, |
|
) |
|
graph_encoder_path: str = field( |
|
metadata={ |
|
"help": "Path to the model weight for graph encoder model " |
|
}, |
|
) |
|
graph_predictor_path: str = field( |
|
metadata={ |
|
"help": "Path to the model weight for graph predictor model " |
|
}, |
|
) |
|
graph_lm_connector_path: str = field( |
|
metadata={ |
|
"help": "Path to the model weight for graph and language model connector " |
|
}, |
|
) |
|
|
|
model_name_or_path: str = field( |
|
metadata={ |
|
"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models." |
|
}, |
|
) |
|
adapter_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Path to the adapter weight or identifier from huggingface.co/models. " |
|
"Use commas to separate multiple adapters." |
|
) |
|
}, |
|
) |
|
adapter_folder: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The folder containing the adapter weights to load."}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."}, |
|
) |
|
|
|
disable_graph_model_gradient: bool = field( |
|
default=True, |
|
metadata={"help": "Whether or not to disable the training of graph models"}, |
|
) |
|
|
|
resize_vocab: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."}, |
|
) |
|
split_special_tokens: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."}, |
|
) |
|
new_special_tokens: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
low_cpu_mem_usage: bool = field( |
|
default=True, |
|
metadata={"help": "Whether or not to use memory-efficient model loading."}, |
|
) |
|
quantization_method: Literal["bitsandbytes", "hqq", "eetq"] = field( |
|
default="bitsandbytes", |
|
metadata={"help": "Quantization method to use for on-the-fly quantization."}, |
|
) |
|
quantization_bit: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of bits to quantize the model using bitsandbytes."}, |
|
) |
|
quantization_type: Literal["fp4", "nf4"] = field( |
|
default="nf4", |
|
metadata={"help": "Quantization data type to use in int4 training."}, |
|
) |
|
double_quantization: bool = field( |
|
default=True, |
|
metadata={"help": "Whether or not to use double quantization in int4 training."}, |
|
) |
|
quantization_device_map: Optional[Literal["auto"]] = field( |
|
default=None, |
|
metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."}, |
|
) |
|
rope_scaling: Optional[Literal["linear", "dynamic"]] = field( |
|
default=None, |
|
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."}, |
|
) |
|
flash_attn: Literal["auto", "disabled", "sdpa", "fa2"] = field( |
|
default="auto", |
|
metadata={"help": "Enable FlashAttention for faster training and inference."}, |
|
) |
|
shift_attn: bool = field( |
|
default=False, |
|
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}, |
|
) |
|
mixture_of_depths: Optional[Literal["convert", "load"]] = field( |
|
default=None, |
|
metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."}, |
|
) |
|
use_unsloth: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."}, |
|
) |
|
visual_inputs: bool = field( |
|
default=False, |
|
metadata={"help": "Whethor or not to use multimodal LLM that accepts visual inputs."}, |
|
) |
|
moe_aux_loss_coef: Optional[float] = field( |
|
default=None, |
|
metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."}, |
|
) |
|
disable_gradient_checkpointing: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to disable gradient checkpointing."}, |
|
) |
|
upcast_layernorm: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to upcast the layernorm weights in fp32."}, |
|
) |
|
upcast_lmhead_output: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to upcast the output of lm_head in fp32."}, |
|
) |
|
train_from_scratch: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to randomly initialize the model weights."}, |
|
) |
|
infer_backend: Literal["huggingface", "vllm"] = field( |
|
default="huggingface", |
|
metadata={"help": "Backend engine used at inference."}, |
|
) |
|
vllm_maxlen: int = field( |
|
default=2048, |
|
metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."}, |
|
) |
|
vllm_gpu_util: float = field( |
|
default=0.9, |
|
metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."}, |
|
) |
|
vllm_enforce_eager: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."}, |
|
) |
|
vllm_max_lora_rank: int = field( |
|
default=32, |
|
metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."}, |
|
) |
|
offload_folder: str = field( |
|
default="offload", |
|
metadata={"help": "Path to offload model weights."}, |
|
) |
|
use_cache: bool = field( |
|
default=True, |
|
metadata={"help": "Whether or not to use KV cache in generation."}, |
|
) |
|
infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field( |
|
default="auto", |
|
metadata={"help": "Data type for model weights and activations at inference."}, |
|
) |
|
hf_hub_token: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Auth token to log in with Hugging Face Hub."}, |
|
) |
|
ms_hub_token: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Auth token to log in with ModelScope Hub."}, |
|
) |
|
export_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to the directory to save the exported model."}, |
|
) |
|
export_size: int = field( |
|
default=1, |
|
metadata={"help": "The file shard size (in GB) of the exported model."}, |
|
) |
|
export_device: Literal["cpu", "auto"] = field( |
|
default="cpu", |
|
metadata={"help": "The device used in model export, use `auto` to accelerate exporting."}, |
|
) |
|
export_quantization_bit: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of bits to quantize the exported model."}, |
|
) |
|
export_quantization_dataset: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}, |
|
) |
|
export_quantization_nsamples: int = field( |
|
default=128, |
|
metadata={"help": "The number of samples used for quantization."}, |
|
) |
|
export_quantization_maxlen: int = field( |
|
default=1024, |
|
metadata={"help": "The maximum length of the model inputs used for quantization."}, |
|
) |
|
export_legacy_format: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."}, |
|
) |
|
export_hub_model_id: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."}, |
|
) |
|
print_param_status: bool = field( |
|
default=False, |
|
metadata={"help": "For debugging purposes, print the status of the parameters in the model."}, |
|
) |
|
|
|
def __post_init__(self): |
|
self.compute_dtype: Optional["torch.dtype"] = None |
|
self.device_map: Optional[Union[str, Dict[str, Any]]] = None |
|
self.model_max_length: Optional[int] = None |
|
|
|
if self.split_special_tokens and self.use_fast_tokenizer: |
|
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.") |
|
|
|
if self.visual_inputs and self.use_unsloth: |
|
raise ValueError("Unsloth does not support MLLM yet. Stay tuned.") |
|
|
|
if self.adapter_name_or_path is not None: |
|
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")] |
|
|
|
if self.new_special_tokens is not None: |
|
self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")] |
|
|
|
if self.export_quantization_bit is not None and self.export_quantization_dataset is None: |
|
raise ValueError("Quantization dataset is necessary for exporting.") |
|
|
|
def to_dict(self) -> Dict[str, Any]: |
|
return asdict(self) |
|
|
|
@classmethod |
|
def copyfrom(cls, old_arg: Self, **kwargs) -> Self: |
|
arg_dict = old_arg.to_dict() |
|
arg_dict.update(**kwargs) |
|
new_arg = cls(**arg_dict) |
|
new_arg.compute_dtype = old_arg.compute_dtype |
|
new_arg.device_map = old_arg.device_map |
|
new_arg.model_max_length = old_arg.model_max_length |
|
return new_arg |
|
|