File size: 8,329 Bytes
13362e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Copyright 2024 Llamole Team
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import yaml
import numpy as np
import gradio as gr
import random
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem import AllChem
from src.webui.workflow import load_model_and_tokenizer, process_input, generate
from src.webui.elements import create_input_components
# Load candidates
with open('data/molqa_material_examples.json', 'r') as f:
material_examples = json.load(f)
with open('data/molqa_drug_examples.json', 'r') as f:
drug_examples = json.load(f)
# Add type to each example
for example in material_examples:
example['type'] = 'Material'
for example in drug_examples:
example['type'] = 'Drug'
# Function to process property values
def process_property(value):
return 1e-8 if value == 0 else value
# Add type to each example and process property values
for example in material_examples:
example['type'] = 'Material'
for prop in ['CO2', 'N2', 'O2', 'FFV']:
if prop in example['property']:
example['property'][prop] = process_property(example['property'][prop])
# Combine examples
all_examples = material_examples + drug_examples
# Get default values from the first material example
default_values = drug_examples[0]
# Load property ranges and arguments
with open('data/property_ranges.json', 'r') as f:
property_ranges = json.load(f)
# with open('config/generate/qwen_material.yaml', 'r') as file:
with open('config/generate/llama_material.yaml', 'r') as file:
args_dict = yaml.safe_load(file)
# Load model and tokenizer outside the function
model, tokenizer, generating_args = load_model_and_tokenizer(args_dict)
def format_example(example):
formatted = [example['instruction']]
# Determine if it's a drug or material example based on properties
is_drug = any(prop in example.get('property', {}) for prop in ["HIV", "BBBP", "BACE"])
formatted.append("Drug" if is_drug else "Material")
# Handle drug properties
for prop in ["HIV", "BBBP", "BACE"]:
value = example.get('property', {}).get(prop, float('nan'))
formatted.append(value if not np.isnan(value) else "NAN")
# Handle material properties
for prop in ["CO2", "N2", "O2", "FFV", "TC"]:
value = example.get('property', {}).get(prop, float('nan'))
formatted.append(value if not np.isnan(value) else 0) # 0 represents NAN for material properties
# Handle synthetic properties
for prop in ["SC", "SA"]:
value = example.get('property', {}).get(prop, float('nan'))
formatted.append(value if not np.isnan(value) else float('nan'))
return formatted
# Prepare examples
formatted_examples = [format_example(example) for example in all_examples]
def random_example(examples):
example = random.choice(examples)
property_type = example['type']
outputs = [example['instruction'], property_type]
for prop in ["HIV", "BBBP", "BACE"]:
outputs.append(example['property'].get(prop, "NAN"))
for prop in ["CO2", "N2", "O2", "FFV", "TC"]:
outputs.append(example['property'].get(prop, 0))
for prop in ["SC", "SA"]:
outputs.append(example['property'].get(prop, float('nan')))
return outputs
def generate_and_visualize(instruction, property_type, HIV, BBBP, BACE, CO2, N2, O2, FFV, TC, SC, SA):
properties = {
"HIV": float('nan') if HIV == "NAN" else HIV,
"BBBP": float('nan') if BBBP == "NAN" else BBBP,
"BACE": float('nan') if BACE == "NAN" else BACE,
"CO2": float('nan') if CO2 == 0 else CO2,
"N2": float('nan') if N2 == 0 else N2,
"O2": float('nan') if O2 == 0 else O2,
"FFV": float('nan') if FFV == 0 else FFV,
"TC": float('nan') if TC == 0 else TC,
"SC": SC,
"SA": SA
}
# Filter out NaN values
properties = {k: v for k, v in properties.items() if not np.isnan(v)}
print('instruction', instruction)
print('properties', properties)
results = run_molqa(instruction, **properties)
llm_response = results.get('llm_response', 'No response generated')
llm_smiles = results.get('llm_smiles')
llm_reactions = results['llm_reactions']
molecule_img = visualize_molecule(llm_smiles) if llm_smiles else None
reaction_steps = []
reaction_imgs = []
if llm_reactions:
for i, reaction_dict in enumerate(llm_reactions):
reaction = reaction_dict.get('reaction')
if reaction:
reaction_steps.append(f"Step {i+1}: {reaction}")
reaction_imgs.append(visualize_reaction(reaction))
return (
llm_response,
llm_smiles if llm_smiles else "No SMILES generated",
molecule_img,
gr.JSON(value=reaction_steps, visible=bool(reaction_steps)),
gr.Gallery(value=reaction_imgs, visible=bool(reaction_imgs))
)
def run_molqa(instruction: str, **properties) -> dict:
# Filter out properties with NaN values
filtered_properties = {k: v for k, v in properties.items() if not np.isnan(v)}
input_data = {
"instruction": instruction,
"input": "",
"property": filtered_properties
}
dataloader, gen_kwargs = process_input(input_data, model, tokenizer, generating_args)
generated_results = generate(model, dataloader, gen_kwargs)
return generated_results
def visualize_molecule(smiles: str) -> np.ndarray:
mol = Chem.MolFromSmiles(smiles)
if mol is not None:
img = Draw.MolToImage(mol)
return np.array(img)
return np.zeros((300, 300, 3), dtype=np.uint8)
def visualize_reaction(reaction: str) -> np.ndarray:
rxn = AllChem.ReactionFromSmarts(reaction, useSmiles=True)
if rxn is not None:
img = Draw.ReactionToImage(rxn)
return np.array(img)
return np.zeros((300, 300, 3), dtype=np.uint8)
# Define property names and their full descriptions
property_names = {
"HIV": "HIV virus replication inhibition",
"BBBP": "Blood-brain barrier permeability",
"BACE": "Human β-secretase 1 inhibition",
"CO2": "CO2 Perm",
"N2": "N2 Perm",
"O2": "O2 Perm",
"FFV": "Fractional free volume",
"TC": "Thermal conductivity",
"SC": "Heuristic Synthetic Scores (SCScore)",
"SA": "Synthetic Synthetic Scores (SAScore)"
}
# Define outputs
outputs = [
gr.Textbox(label="Overall LLM Response"),
gr.Textbox(label="Generated SMILES"),
gr.Image(label="Generated Molecule"),
gr.JSON(label="Reaction Steps"),
gr.Gallery(label="Reaction Visualizations")
]
with gr.Blocks() as iface:
gr.Markdown("# Llamole Demo Interface")
gr.Markdown("Enter an instruction and property values to generate a molecule design.")
interface, instruction, property_type, drug_properties, material_properties, synthetic_properties = create_input_components(default_values, property_names, property_ranges)
random_btn = gr.Button("Random Example")
generate_btn = gr.Button("Generate")
for output in outputs:
output.render()
# Update the inputs for the generate button
all_inputs = [instruction, property_type]
all_inputs.extend(drug_properties.values())
all_inputs.extend(material_properties.values())
all_inputs.extend(synthetic_properties.values())
generate_btn.click(generate_and_visualize, inputs=all_inputs, outputs=outputs)
random_btn.click(
random_example,
inputs=gr.State(all_examples),
outputs=all_inputs
)
if __name__ == "__main__":
iface.launch(share=True) |