File size: 7,113 Bytes
13362e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2024 the LlamaFactory team, the Llamole team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict

import torch
from peft import PeftModel
from transformers import PreTrainedModel, PreTrainedTokenizerBase, is_torch_npu_available
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled

from ..extras.logging import get_logger
from ..extras.misc import infer_optim_dtype
from .model_utils.attention import configure_attn_implementation, print_attn_implementation
from .model_utils.checkpointing import prepare_model_for_training
from .model_utils.embedding import resize_embedding_layer
from .model_utils.longlora import configure_longlora
from .model_utils.moe import add_z3_leaf_module, configure_moe
from .model_utils.quantization import configure_quantization
from .model_utils.rope import configure_rope
from .model_utils.valuehead import prepare_valuehead_model

if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedTokenizer
    from trl import AutoModelForCausalLMWithValueHead

    from ..hparams import ModelArguments


logger = get_logger(__name__)


def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
    if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
        tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)


def patch_config(
    config: "PretrainedConfig",
    tokenizer: "PreTrainedTokenizer",
    model_args: "ModelArguments",
    init_kwargs: Dict[str, Any],
    is_trainable: bool,
) -> None:
    if model_args.compute_dtype is None:  # priority: bf16 > fp16 > fp32
        if model_args.infer_dtype != "auto" and not is_trainable:
            model_args.compute_dtype = getattr(torch, model_args.infer_dtype)
        else:
            model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))

    if is_torch_npu_available():
        use_jit_compile = os.environ.get("JIT_COMPILE", "0").lower() in ["true", "1"]
        torch.npu.set_compile_mode(jit_compile=use_jit_compile)

    configure_attn_implementation(config, model_args, is_trainable)
    configure_rope(config, model_args, is_trainable)
    configure_longlora(config, model_args, is_trainable)
    configure_quantization(config, tokenizer, model_args, init_kwargs)
    configure_moe(config, model_args, is_trainable)

    # configure_visual_model(config)

    if model_args.use_cache and not is_trainable:
        setattr(config, "use_cache", True)
        logger.info("Using KV cache for faster generation.")

    if getattr(config, "model_type", None) == "qwen":
        setattr(config, "use_flash_attn", model_args.flash_attn == "fa2")
        for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
            setattr(config, dtype_name, model_args.compute_dtype == dtype)

    if getattr(config, "model_type", None) == "qwen2" and is_trainable and model_args.flash_attn == "fa2":
        setattr(config, "use_cache", False)  # qwen2 does not support use_cache when using flash attn

    # deepspeed zero3 is not compatible with low_cpu_mem_usage
    init_kwargs["low_cpu_mem_usage"] = model_args.low_cpu_mem_usage and (not is_deepspeed_zero3_enabled())

    # cast data type of the model if:
    # 1. not deepspeed zero3 and not fsdp (keep zero3 or fsdp in float32)
    # 2. quantization_bit is not None (qlora)
    if (not is_deepspeed_zero3_enabled() and not is_fsdp_enabled()) or model_args.quantization_bit is not None:
        init_kwargs["torch_dtype"] = model_args.compute_dtype

        if init_kwargs["low_cpu_mem_usage"]:  # device map requires low_cpu_mem_usage=True
            if "device_map" not in init_kwargs and model_args.device_map:
                init_kwargs["device_map"] = model_args.device_map

            if init_kwargs.get("device_map", None) == "auto":
                init_kwargs["offload_folder"] = model_args.offload_folder


def patch_model(
    model: "PreTrainedModel",
    tokenizer: "PreTrainedTokenizer",
    model_args: "ModelArguments",
    is_trainable: bool,
    add_valuehead: bool,
) -> None:
    gen_config = model.generation_config  # check and fix generation config
    if not gen_config.do_sample and (
        (gen_config.temperature is not None and gen_config.temperature != 1.0)
        or (gen_config.top_p is not None and gen_config.top_p != 1.0)
        or (gen_config.typical_p is not None and gen_config.typical_p != 1.0)
    ):
        gen_config.do_sample = True

    if "GenerationMixin" not in str(model.generate.__func__):
        model.generate = MethodType(PreTrainedModel.generate, model)

    if add_valuehead:
        prepare_valuehead_model(model)

    if model_args.resize_vocab:
        resize_embedding_layer(model, tokenizer)

    if model_args.visual_inputs:
        autocast_projector_dtype(model, model_args)

    if is_trainable:
        prepare_model_for_training(model, model_args)
        add_z3_leaf_module(model)

    if not model_args.use_unsloth:
        print_attn_implementation(model.config)

def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None:
    def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None:
        if isinstance(self.pretrained_model, PreTrainedModel):
            self.pretrained_model.tie_weights()

    def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module:
        if isinstance(self.pretrained_model, PreTrainedModel):
            return self.pretrained_model.get_input_embeddings()

    def get_output_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module:
        if isinstance(self.pretrained_model, PreTrainedModel):
            return self.pretrained_model.get_output_embeddings()

    def create_or_update_model_card(self: "AutoModelForCausalLMWithValueHead", output_dir: str) -> None:
        if isinstance(self.pretrained_model, PeftModel):
            self.pretrained_model.create_or_update_model_card(output_dir)

    ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name]
    setattr(model, "_keys_to_ignore_on_save", ignore_modules)
    setattr(model, "tie_weights", MethodType(tie_weights, model))
    setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model))
    setattr(model, "get_output_embeddings", MethodType(get_output_embeddings, model))
    setattr(model, "create_or_update_model_card", MethodType(create_or_update_model_card, model))