Spaces:
Runtime error
Runtime error
File size: 5,362 Bytes
b8975f7 e984a2c b8975f7 87a083e e984a2c 04793b9 f3f26af 04793b9 f5e7ff1 b8975f7 04793b9 b8975f7 04793b9 f5e7ff1 b8975f7 f3f26af 3cb91bd b8975f7 f3f26af b8975f7 f3f26af b8975f7 b6a9837 04793b9 f5e7ff1 04793b9 f3f26af 04793b9 f3f26af b8975f7 f3f26af 039e573 04793b9 039e573 04793b9 b8975f7 e0d52d7 04793b9 e0d52d7 b8975f7 3ce81f3 f3f26af b8975f7 f5e7ff1 b8975f7 7ab092f f5e7ff1 3cb91bd b8975f7 7ab092f f5e7ff1 3cb91bd 3ce81f3 b8975f7 f5e7ff1 b8975f7 f5e7ff1 3ce81f3 b8975f7 f5e7ff1 b8975f7 f5e7ff1 3ce81f3 b8975f7 04793b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
import random
import uuid
import json
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
DESCRIPTION = "A Stable Diffusion XL demo running on CPU."
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
# Set device to CPU explicitly
device = torch.device("cpu")
# Load pipeline and scheduler for CPU
pipe = StableDiffusionXLPipeline.from_pretrained(
"sd-community/sdxl-flash",
torch_dtype=torch.float32, # Use float32 for CPU
use_safetensors=True,
add_watermarker=False
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device) # Move the model to CPU
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
num_inference_steps: int = 25,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
options = {
"prompt": prompt,
"negative_prompt": negative_prompt if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"use_resolution_binning": use_resolution_binning,
"output_type": "pil",
}
# Generate images
images = pipe(**options).images
image_paths = [save_image(img) for img in images]
return image_paths, seed
css = '''
.gradio-container { max-width: 700px !important; }
h1 { text-align: center; }
footer { visibility: hidden; }
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("""
<div style="text-align: center; font-weight: bold; font-size: 2em;">
Womener AI (CPU Mode)
</div>
""")
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=6,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=15,
step=1,
value=8,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=50).launch()
|