File size: 5,362 Bytes
b8975f7
 
 
 
 
e984a2c
 
b8975f7
 
87a083e
e984a2c
04793b9
f3f26af
 
04793b9
f5e7ff1
 
 
b8975f7
04793b9
 
b8975f7
04793b9
 
 
 
 
 
 
 
 
f5e7ff1
 
 
 
 
 
 
 
 
 
 
b8975f7
 
 
 
f3f26af
3cb91bd
 
b8975f7
f3f26af
b8975f7
f3f26af
b8975f7
 
b6a9837
04793b9
f5e7ff1
 
04793b9
 
 
 
 
 
 
 
 
f3f26af
04793b9
 
f3f26af
b8975f7
 
 
 
f3f26af
039e573
04793b9
 
 
039e573
04793b9
b8975f7
e0d52d7
 
04793b9
e0d52d7
 
 
b8975f7
3ce81f3
 
 
 
 
 
 
 
 
f3f26af
b8975f7
f5e7ff1
 
 
 
 
 
 
 
 
 
b8975f7
 
 
 
 
 
 
 
 
 
 
7ab092f
f5e7ff1
 
3cb91bd
b8975f7
 
 
7ab092f
f5e7ff1
 
3cb91bd
3ce81f3
b8975f7
 
 
 
f5e7ff1
b8975f7
f5e7ff1
 
 
 
 
 
 
 
3ce81f3
 
b8975f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e7ff1
b8975f7
 
 
f5e7ff1
3ce81f3
 
b8975f7
04793b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import random
import uuid
import json

import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

DESCRIPTION = "A Stable Diffusion XL demo running on CPU."

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

# Set device to CPU explicitly
device = torch.device("cpu")

# Load pipeline and scheduler for CPU
pipe = StableDiffusionXLPipeline.from_pretrained(
    "sd-community/sdxl-flash",
    torch_dtype=torch.float32,  # Use float32 for CPU
    use_safetensors=True,
    add_watermarker=False
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)  # Move the model to CPU

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)

    options = {
        "prompt": prompt,
        "negative_prompt": negative_prompt if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "use_resolution_binning": use_resolution_binning,
        "output_type": "pil",
    }

    # Generate images
    images = pipe(**options).images

    image_paths = [save_image(img) for img in images]
    return image_paths, seed


css = '''
.gradio-container { max-width: 700px !important; }
h1 { text-align: center; }
footer { visibility: hidden; }
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown("""
<div style="text-align: center; font-weight: bold; font-size: 2em;">
    Womener AI (CPU Mode)
</div>
""")

    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", columns=1)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=5,
                lines=4,
                placeholder="Enter a negative prompt",
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
                visible=True,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=6,
                step=0.1,
                value=3.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=15,
                step=1,
                value=8,
            )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=50).launch()