恢复自己的,应该是保存了,需要一会才能生效
Browse files
app.py
CHANGED
@@ -1,81 +1,84 @@
|
|
1 |
-
#
|
2 |
-
|
3 |
-
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
|
8 |
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
#
|
34 |
-
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
import streamlit as st
|
39 |
-
from transformers import pipeline, set_seed
|
40 |
|
41 |
-
# 设置全局随机种子,确保每次生成的结果相同
|
42 |
-
set_seed(42)
|
43 |
|
44 |
-
def app():
|
45 |
-
# 创建Streamlit应用程序
|
46 |
-
st.title("使用gpt2的文本生成")
|
47 |
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
if __name__ == "__main__":
|
79 |
-
|
80 |
-
|
81 |
|
|
|
1 |
+
# pip install transformers 依赖在requirements.txt里文件安装
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import pipeline, set_seed
|
4 |
|
5 |
+
# 设置全局随机种子,确保每次生成的结果相同
|
6 |
+
set_seed(42)
|
7 |
|
8 |
|
9 |
+
options = ['中文','英文']
|
10 |
+
choice = st.radio('不同语言使用不同模型:', options)
|
11 |
|
12 |
+
input_text = st.text_input("请输入您要生成的文本", value="")
|
13 |
+
maxlen = st.text_input("请输入生成文本的最大长度,越长越慢,不要超过1000", value="30")
|
14 |
+
button_generate = st.button("生成")
|
15 |
+
output_text = st.empty()
|
16 |
|
17 |
+
def generate_text(input_text):
|
18 |
+
# 加载预训练模型
|
19 |
+
if choice == '中文':
|
20 |
+
model = 'uer/gpt2-chinese-cluecorpussmall' # 纠正后的应该可以
|
21 |
+
#model = 'gpt2-chinese-cluecorpussmall' # 会自动下载
|
22 |
+
generator = pipeline("text-generation", model)
|
23 |
|
24 |
+
# 生成文本
|
25 |
+
output = generator(input_text, max_length=int(maxlen), num_return_sequences=1)
|
26 |
|
27 |
+
# 提取生成的文本
|
28 |
+
generated_text = output[0]["generated_text"].strip()
|
29 |
|
30 |
+
return generated_text
|
31 |
|
32 |
+
if button_generate:
|
33 |
+
# 生成文本
|
34 |
+
generated_text = generate_text(input_text)
|
35 |
|
36 |
+
# 显示生成的文本
|
37 |
+
output_text.success(generated_text)
|
|
|
|
|
38 |
|
|
|
|
|
39 |
|
|
|
|
|
|
|
40 |
|
41 |
+
# import streamlit as st
|
42 |
+
# from transformers import pipeline, set_seed
|
43 |
+
|
44 |
+
# # 设置全局随机种子,确保每次生成的结果相同
|
45 |
+
# set_seed(42)
|
46 |
+
|
47 |
+
# def app():
|
48 |
+
# # 创建Streamlit应用程序
|
49 |
+
# st.title("使用gpt2的文本生成")
|
50 |
+
|
51 |
+
# options = ['中文','英文']
|
52 |
+
# choice = st.radio('不同语言使用不同模型:', options)
|
53 |
|
54 |
+
# input_text = st.text_input("请输入您要生成的文本", value="")
|
55 |
+
# maxlen = st.text_input("请输入生成文本的最大长度,越长越慢,不要超过1000", value="30")
|
56 |
+
# button_generate = st.button("生成")
|
57 |
+
# output_text = st.empty()
|
58 |
|
59 |
+
# def generate_text(input_text):
|
60 |
+
# # 加载预训练模型
|
61 |
+
# model="gpt2"
|
62 |
+
# if choice == '中文':
|
63 |
+
# model = 'uer/gpt2-chinese-cluecorpussmall'
|
64 |
+
# generator = pipeline("text-generation", model)
|
65 |
|
66 |
+
# # 生成文本
|
67 |
+
# output = generator(input_text, max_length=int(maxlen), num_return_sequences=1)
|
68 |
|
69 |
+
# # 提取生成的文本
|
70 |
+
# generated_text = output[0]["generated_text"].strip()
|
71 |
|
72 |
+
# return generated_text
|
73 |
|
74 |
+
# if button_generate:
|
75 |
+
# # 生成文本
|
76 |
+
# generated_text = generate_text(input_text)
|
77 |
|
78 |
+
# # 显示生成的文本
|
79 |
+
# output_text.success(generated_text)
|
80 |
|
81 |
+
# if __name__ == "__main__":
|
82 |
+
# # 运行应用程序
|
83 |
+
# app()
|
84 |
|